Best Proximity Points of Generalized Semicyclic Impulsive Self-Mappings: Applications To Impulsive Differential and Difference Equations
| dc.contributor.author | De la Sen, M. | |
| dc.contributor.author | Karapinar, E. | |
| dc.date.accessioned | 2024-07-05T14:28:47Z | |
| dc.date.available | 2024-07-05T14:28:47Z | |
| dc.date.issued | 2013 | |
| dc.description | de la Sen, manuel/0000-0001-9320-9433; KARAPINAR, ERDAL/0000-0002-6798-3254 | en_US |
| dc.description.abstract | This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given. | en_US |
| dc.description.sponsorship | Spanish Government [DPI2012-30651]; Basque Government [IT378-10, SAIOTEK S-PE12UN015]; University of Basque Country [UFI 2011/07] | en_US |
| dc.description.sponsorship | The authors are very grateful to the Spanish Government for its support through Grant DPI2012-30651 and to the Basque Government by its support through Grant nos. IT378-10 and SAIOTEK S-PE12UN015. They are also grateful to the University of Basque Country for its support through Grant UFI 2011/07. | en_US |
| dc.identifier.doi | 10.1155/2013/505487 | |
| dc.identifier.issn | 1085-3375 | |
| dc.identifier.issn | 1687-0409 | |
| dc.identifier.scopus | 2-s2.0-84888875798 | |
| dc.identifier.uri | https://doi.org/10.1155/2013/505487 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/436 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.relation.ispartof | Abstract and Applied Analysis | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | Best Proximity Points of Generalized Semicyclic Impulsive Self-Mappings: Applications To Impulsive Differential and Difference Equations | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | de la Sen, manuel/0000-0001-9320-9433 | |
| gdc.author.id | KARAPINAR, ERDAL/0000-0002-6798-3254 | |
| gdc.author.scopusid | 7102275804 | |
| gdc.author.scopusid | 16678995500 | |
| gdc.author.wosid | de la Sen, manuel/A-8803-2008 | |
| gdc.author.wosid | KARAPINAR, ERDAL/H-3177-2011 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [De la Sen, M.] Univ Basque Country, Inst Res & Dev Proc, Bilbao 48940, Spain; [Karapinar, E.] ATILIM Univ, Dept Math, TR-06586 Ankara, Turkey | en_US |
| gdc.description.endpage | 16 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 2013 | |
| gdc.identifier.openalex | W2104632281 | |
| gdc.identifier.wos | WOS:000326829400001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 3.0506502E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | complete metric spaces | |
| gdc.oaire.keywords | ANALYSIS | |
| gdc.oaire.keywords | pair | |
| gdc.oaire.keywords | existence | |
| gdc.oaire.keywords | contraction | |
| gdc.oaire.keywords | common fixed-point | |
| gdc.oaire.keywords | stability | |
| gdc.oaire.keywords | theorems | |
| gdc.oaire.keywords | MATHEMATICS, APPLIED | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | approximation | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | time-delay systems | |
| gdc.oaire.keywords | Fixed-point and coincidence theorems (topological aspects) | |
| gdc.oaire.keywords | Special maps on metric spaces | |
| gdc.oaire.popularity | 1.4102228E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.5610687 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 7 | |
| gdc.plumx.crossrefcites | 8 | |
| gdc.plumx.facebookshareslikecount | 1 | |
| gdc.plumx.mendeley | 6 | |
| gdc.plumx.scopuscites | 12 | |
| gdc.scopus.citedcount | 12 | |
| gdc.virtual.author | Karapınar, Erdal | |
| gdc.wos.citedcount | 10 | |
| relation.isAuthorOfPublication | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isAuthorOfPublication.latestForDiscovery | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
