Best Proximity Points of Generalized Semicyclic Impulsive Self-Mappings: Applications To Impulsive Differential and Difference Equations

dc.contributor.author De la Sen, M.
dc.contributor.author Karapinar, E.
dc.date.accessioned 2024-07-05T14:28:47Z
dc.date.available 2024-07-05T14:28:47Z
dc.date.issued 2013
dc.description de la Sen, manuel/0000-0001-9320-9433; KARAPINAR, ERDAL/0000-0002-6798-3254 en_US
dc.description.abstract This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given. en_US
dc.description.sponsorship Spanish Government [DPI2012-30651]; Basque Government [IT378-10, SAIOTEK S-PE12UN015]; University of Basque Country [UFI 2011/07] en_US
dc.description.sponsorship The authors are very grateful to the Spanish Government for its support through Grant DPI2012-30651 and to the Basque Government by its support through Grant nos. IT378-10 and SAIOTEK S-PE12UN015. They are also grateful to the University of Basque Country for its support through Grant UFI 2011/07. en_US
dc.identifier.doi 10.1155/2013/505487
dc.identifier.issn 1085-3375
dc.identifier.issn 1687-0409
dc.identifier.scopus 2-s2.0-84888875798
dc.identifier.uri https://doi.org/10.1155/2013/505487
dc.identifier.uri https://hdl.handle.net/20.500.14411/436
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.ispartof Abstract and Applied Analysis
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Best Proximity Points of Generalized Semicyclic Impulsive Self-Mappings: Applications To Impulsive Differential and Difference Equations en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id de la Sen, manuel/0000-0001-9320-9433
gdc.author.id KARAPINAR, ERDAL/0000-0002-6798-3254
gdc.author.scopusid 7102275804
gdc.author.scopusid 16678995500
gdc.author.wosid de la Sen, manuel/A-8803-2008
gdc.author.wosid KARAPINAR, ERDAL/H-3177-2011
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [De la Sen, M.] Univ Basque Country, Inst Res & Dev Proc, Bilbao 48940, Spain; [Karapinar, E.] ATILIM Univ, Dept Math, TR-06586 Ankara, Turkey en_US
gdc.description.endpage 16
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1
gdc.description.volume 2013
gdc.identifier.openalex W2104632281
gdc.identifier.wos WOS:000326829400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.0506502E-9
gdc.oaire.isgreen true
gdc.oaire.keywords complete metric spaces
gdc.oaire.keywords ANALYSIS
gdc.oaire.keywords pair
gdc.oaire.keywords existence
gdc.oaire.keywords contraction
gdc.oaire.keywords common fixed-point
gdc.oaire.keywords stability
gdc.oaire.keywords theorems
gdc.oaire.keywords MATHEMATICS, APPLIED
gdc.oaire.keywords QA1-939
gdc.oaire.keywords approximation
gdc.oaire.keywords Mathematics
gdc.oaire.keywords time-delay systems
gdc.oaire.keywords Fixed-point and coincidence theorems (topological aspects)
gdc.oaire.keywords Special maps on metric spaces
gdc.oaire.popularity 1.4102228E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 3.5610687
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 7
gdc.plumx.crossrefcites 8
gdc.plumx.facebookshareslikecount 1
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Karapınar, Erdal
gdc.wos.citedcount 10
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections