Integration of Conductive Additives To Pla-Based Biodegradable Composite Films To Improve Their Electrical, Mechanical, and Physical Characteristics

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

In this study, Oltu stone powder (OS) and Fe3O4/mica-based conductive pigment (CP) were compounded with polylactic acid (PLA) to develop bio-based conductive films. Four different concentrations of 1%, 10%, 20%, and 30% of powders were applied to determine their optimal concentration in the PLA matrix. The mechanical, thermomechanical, electrical conductivity, melt-flow, and morphological properties of composite films were reported using the tensile, hardness, and impact tests, dynamic mechanical analyses test, linear four-probe method, and atomic force microscopy (AFM), melt-flow index measurements, and scanning electron microscopy methodology, respectively. According to tensile test results, tensile strength and modulus characteristics of PLA decrease with additive integration. However, the elongation value of PLA declined as OS and CP loadings increased. The maximum tensile performance was attained for composites filled with 20% of both CP and OS. The unfilled PLA's Shore D value rose by including OS and CP. At the same loading levels, carbon-based OS produced comparatively higher hardness values than CP, which comprised iron oxide and alumina silicate. AFM analysis revealed that both CP and OS inclusions caused enhancements in surface roughness as their filling amounts increased. In summary, composite samples exhibiting a 20% loading ratio of both OS and CP showed significantly improved mechanical and thermomechanical performances compared to other composites. Composite films with 1% additives have the potential to be applied in electrostatic packing. Additionally, 3D-printed components can be fabricated using composites for applications where appropriate mechanical resistance and electrical conductivity specifications are required.

Description

Keywords

Composite Films, Conductive Pigment, Electrostatic Packaging, Oltu Stone, Polylactic Acid

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2

Source

Volume

36

Issue

5

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available