Fixed points for cyclic orbital generalized contractions on complete metric spaces
No Thumbnail Available
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
de Gruyter Open Ltd
Open Access Color
GOLD
Green Open Access
Yes
OpenAIRE Downloads
55
OpenAIRE Views
64
Publicly Funded
No
Abstract
We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293-303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal.
Description
Tas, Kenan/0000-0001-8173-453X; KARAPINAR, ERDAL/0000-0002-6798-3254; Romaguera, Salvador/0000-0001-7857-6139;
Keywords
Fixed point, Cyclic generalized contraction, Complete metric space, Cyclic generalized contraction, 54e50, Fixed point, 46t99, 54h25, fixed point, complete metric space, QA1-939, Complete metric space, cyclic generalized contraction, MATEMATICA APLICADA, 47h10, Mathematics, Fixed-point and coincidence theorems (topological aspects), Complete metric spaces
Turkish CoHE Thesis Center URL
Fields of Science
01 natural sciences, 0101 mathematics
Citation
WoS Q
Q2
Scopus Q
Q1

OpenCitations Citation Count
5
Source
Open Mathematics
Volume
11
Issue
3
Start Page
552
End Page
560
PlumX Metrics
Citations
CrossRef : 4
Scopus : 15
Captures
Mendeley Readers : 3
SCOPUS™ Citations
15
checked on Jan 27, 2026
Web of Science™ Citations
11
checked on Jan 27, 2026
Google Scholar™


