Fixed points for cyclic orbital generalized contractions on complete metric spaces

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

de Gruyter Open Ltd

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

55

OpenAIRE Views

64

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293-303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal.

Description

Tas, Kenan/0000-0001-8173-453X; KARAPINAR, ERDAL/0000-0002-6798-3254; Romaguera, Salvador/0000-0001-7857-6139;

Keywords

Fixed point, Cyclic generalized contraction, Complete metric space, Cyclic generalized contraction, 54e50, Fixed point, 46t99, 54h25, fixed point, complete metric space, QA1-939, Complete metric space, cyclic generalized contraction, MATEMATICA APLICADA, 47h10, Mathematics, Fixed-point and coincidence theorems (topological aspects), Complete metric spaces

Turkish CoHE Thesis Center URL

Fields of Science

01 natural sciences, 0101 mathematics

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
5

Source

Open Mathematics

Volume

11

Issue

3

Start Page

552

End Page

560

Collections

PlumX Metrics
Citations

CrossRef : 4

Scopus : 15

Captures

Mendeley Readers : 3

SCOPUS™ Citations

15

checked on Jan 27, 2026

Web of Science™ Citations

11

checked on Jan 27, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.05395124

Sustainable Development Goals

SDG data is not available