Forecasting the Bist 100 Index With Support Vector Machines

dc.authorscopusid 57210105250
dc.authorscopusid 36523620300
dc.authorscopusid 36464524900
dc.contributor.author Ünlü,K.D.
dc.contributor.author Potas,N.
dc.contributor.author Ylmaz,M.
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:49:58Z
dc.date.available 2024-07-05T15:49:58Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp Ünlü K.D., Department of Mathematics, Atilim University, Ankara, Turkey; Potas N., Department of Healthcare Management, Ankara Haci Bayram Veli University, Ankara, Turkey; Ylmaz M., Department of Statistics, Ankara University, Ankara, Turkey en_US
dc.description.abstract Recent literature shows that statistical learning algorithms are powerful for forecasting financial time series. In this study, we model and forecast the Borsa Istanbul 100 Index by employing the machine learning algorithm, support vector machine. The dataset contains the highest price, lowest price, closing price and volume of the index for the period between July 2020 and June 2021.We utilize three different kernels. The empirical findings show that linear kernel gives the best result with coefficient of determination of 0.91 and root mean square error of 0.0062. The second best is polynomial kernel, and it is followed by radial basis kernel. The study shows that statistical learning algorithms can be thought of as an alternative to classical time series methodology in forecasting financial time series. © 2022 by World Scientific Publishing Europe Ltd. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1142/q0346_0007
dc.identifier.endpage 171 en_US
dc.identifier.isbn 978-180061175-7
dc.identifier.isbn 978-180061174-0
dc.identifier.scopus 2-s2.0-85143455023
dc.identifier.startpage 161 en_US
dc.identifier.uri https://doi.org/10.1142/q0346_0007
dc.identifier.uri https://hdl.handle.net/20.500.14411/4069
dc.institutionauthor Ünlü, Kamil Demirberk
dc.language.iso en en_US
dc.publisher World Scientific Publishing Co. en_US
dc.relation.ispartof Modeling and Advanced Techniques in Modern Economics en_US
dc.relation.publicationcategory Kitap Bölümü - Uluslararası en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject [No Keyword Available] en_US
dc.title Forecasting the Bist 100 Index With Support Vector Machines en_US
dc.type Book Part en_US
dspace.entity.type Publication
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections