Forecasting the BIST 100 Index with Support Vector Machines

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publishing Co.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Recent literature shows that statistical learning algorithms are powerful for forecasting financial time series. In this study, we model and forecast the Borsa Istanbul 100 Index by employing the machine learning algorithm, support vector machine. The dataset contains the highest price, lowest price, closing price and volume of the index for the period between July 2020 and June 2021.We utilize three different kernels. The empirical findings show that linear kernel gives the best result with coefficient of determination of 0.91 and root mean square error of 0.0062. The second best is polynomial kernel, and it is followed by radial basis kernel. The study shows that statistical learning algorithms can be thought of as an alternative to classical time series methodology in forecasting financial time series. © 2022 by World Scientific Publishing Europe Ltd.

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Scopus Q

Source

Modeling and Advanced Techniques in Modern Economics

Volume

Issue

Start Page

161

End Page

171