A New Family of Orthogonal Polynomials in Three Variables

dc.authorid Güldoğan Lekesiz, Esra/0000-0001-7653-8745
dc.authorid Area, Ivan/0000-0003-0872-5017
dc.authorid Aktas, Rabia/0000-0002-7811-8610
dc.authorscopusid 25823678500
dc.authorscopusid 6603960177
dc.authorscopusid 57221458453
dc.authorwosid Güldoğan Lekesiz, Esra/AAJ-5215-2021
dc.authorwosid Area, Ivan/E-9007-2016
dc.authorwosid Aktas, Rabia/C-1228-2018
dc.contributor.author Aktas, Rabia
dc.contributor.author Area, Ivan
dc.contributor.author Guldogan, Esra
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:30:22Z
dc.date.available 2024-07-05T15:30:22Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Aktas, Rabia] Ankara Univ, Fac Sci, Dept Math, Ankara, Turkey; [Area, Ivan] Univ Vigo, Dept Matemat Aplicada 2, EE Aeronaut & Espazo, Orense, Spain; [Guldogan, Esra] Atilim Univ, Dept Math, Ankara, Turkey en_US
dc.description Güldoğan Lekesiz, Esra/0000-0001-7653-8745; Area, Ivan/0000-0003-0872-5017; Aktas, Rabia/0000-0002-7811-8610 en_US
dc.description.abstract In this paper we introduce a six-parameter generalization of the four-parameter three-variable polynomials on the simplex and we investigate the properties of these polynomials. Sparse recurrence relations are derived by using ladder relations for shifted univariate Jacobi polynomials and bivariate polynomials on the triangle. Via these sparse recurrence relations, second order partial differential equations are presented. Some connection relations are obtained between these polynomials. Also, new results for the four-parameter three-variable polynomials on the simplex are given. Finally, some generating functions are derived. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [1059B191802162]; Agencia Estatal de Investigacion (AEI) of Spain [MTM2016-75140-P]; European Community fund FEDER en_US
dc.description.sponsorship The research of R. Aktas was done while she was visiting Universidade de Vigo, Spain, and the research has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK), Grant 1059B191802162. The work of the second author has been partially supported by the Agencia Estatal de Investigacion (AEI) of Spain under Grant MTM2016-75140-P, and was cofinanced by the European Community fund FEDER. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1186/s13660-020-02434-5
dc.identifier.issn 1029-242X
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85086599537
dc.identifier.uri https://doi.org/10.1186/s13660-020-02434-5
dc.identifier.uri https://hdl.handle.net/20.500.14411/3035
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000542702200003
dc.identifier.wosquality Q1
dc.institutionauthor Lekesiz, Esra Güldoğan
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject Jacobi polynomials en_US
dc.subject Koornwinder polynomials en_US
dc.subject Generating function en_US
dc.subject Recurrence relation en_US
dc.subject Partial differential equation en_US
dc.subject Connection relation en_US
dc.title A New Family of Orthogonal Polynomials in Three Variables en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 9d2c18c3-9314-41de-843d-4e1bdb1b4f38
relation.isAuthorOfPublication.latestForDiscovery 9d2c18c3-9314-41de-843d-4e1bdb1b4f38
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections