Photoelectronic and electrical properties of InS crystals

No Thumbnail Available

Date

2002

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

To identify the localized levels in InS single crystals, the dark electrical conductivity, current-voltage characteristics and photoconductivity measurements were carried out in the temperature range of 10-350 K. Temperature dependence of dark electrical conductivity and the space-charge limited current studies indicate the presence of a single discrete trapping level located at (10 +/- 2) meV below the conduction band with a density of about 4.8 x 10(11) cm(-3). The conductivity data above 110 K reveal an additional two independent donor levels with activation energies of (50 +/- 2) and (164 +/- 4) meV indicating the extrinsic nature of conductivity. The spectral distribution of photocurrent in the photon energy range of 0.8-3.1 eV reveals an indirect band gap of (1.91 +/- 0.04) eV. The photocurrent-illumination intensity dependence follows the law I-ph proportional to F-gamma, with gamma being 1.0 and 0.5 at low and high illumination intensities indicating the domination of monomolecular and bimolecular recombination, respectively. It is observed that the photocurrent increases in the temperature range of 10 K up to T-m = 110 K and decreases or remains constant for 110 K < T < 160 K and increases again above 160 K. The temperature dependence of the photocurrent reveals an additional shallow impurity level with activation energies of 3 meV.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

7

WoS Q

Q3

Scopus Q

Source

Volume

17

Issue

12

Start Page

1288

End Page

1292

Collections