Estimating the Parameters of Fitzhugh-Nagumo Neurons from Neural Spiking Data

dc.authoridDoruk, Ozgur/0000-0002-9217-0845
dc.authorscopusid8503734100
dc.authorscopusid57212465314
dc.authorwosidDoruk, Ozgur/T-9951-2018
dc.contributor.authorDoruk, Resat Ozgur
dc.contributor.authorAbosharb, Laila
dc.contributor.otherElectrical-Electronics Engineering
dc.date.accessioned2024-07-05T15:41:37Z
dc.date.available2024-07-05T15:41:37Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Doruk, Resat Ozgur; Abosharb, Laila] Atilim Univ, Dept Elect & Elect Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionDoruk, Ozgur/0000-0002-9217-0845en_US
dc.description.abstractA theoretical and computational study on the estimation of the parameters of a single Fitzhugh-Nagumo model is presented. The difference of this work from a conventional system identification is that the measured data only consist of discrete and noisy neural spiking (spike times) data, which contain no amplitude information. The goal can be achieved by applying a maximum likelihood estimation approach where the likelihood function is derived from point process statistics. The firing rate of the neuron was assumed as a nonlinear map (logistic sigmoid) relating it to the membrane potential variable. The stimulus data were generated by a phased cosine Fourier series having fixed amplitude and frequency but a randomly shot phase (shot at each repeated trial). Various values of amplitude, stimulus component size, and sample size were applied to examine the effect of stimulus to the identification process. Results are presented in tabular and graphical forms, which also include statistical analysis (mean and standard deviation of the estimates). We also tested our model using realistic data from a previous research (H1 neurons of blowflies) and found that the estimates have a tendency to converge.en_US
dc.identifier.citation7
dc.identifier.doi10.3390/brainsci9120364
dc.identifier.issn2076-3425
dc.identifier.issue12en_US
dc.identifier.pmid31835351
dc.identifier.scopus2-s2.0-85076719896
dc.identifier.urihttps://doi.org/10.3390/brainsci9120364
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3456
dc.identifier.volume9en_US
dc.identifier.wosWOS:000506873500001
dc.institutionauthorDoruk, Reşat Özgür
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectneuron modelingen_US
dc.subjectFitzhugh-Nagumo Modelen_US
dc.subjectPoisson processesen_US
dc.subjectinhomogeneous Poissonen_US
dc.subjectneural spikingen_US
dc.subjectmaximum likelihood estimationen_US
dc.titleEstimating the Parameters of Fitzhugh-Nagumo Neurons from Neural Spiking Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscoverybbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections