Estimating the Parameters of Fitzhugh-Nagumo Neurons from Neural Spiking Data

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

A theoretical and computational study on the estimation of the parameters of a single Fitzhugh-Nagumo model is presented. The difference of this work from a conventional system identification is that the measured data only consist of discrete and noisy neural spiking (spike times) data, which contain no amplitude information. The goal can be achieved by applying a maximum likelihood estimation approach where the likelihood function is derived from point process statistics. The firing rate of the neuron was assumed as a nonlinear map (logistic sigmoid) relating it to the membrane potential variable. The stimulus data were generated by a phased cosine Fourier series having fixed amplitude and frequency but a randomly shot phase (shot at each repeated trial). Various values of amplitude, stimulus component size, and sample size were applied to examine the effect of stimulus to the identification process. Results are presented in tabular and graphical forms, which also include statistical analysis (mean and standard deviation of the estimates). We also tested our model using realistic data from a previous research (H1 neurons of blowflies) and found that the estimates have a tendency to converge.

Description

Doruk, Ozgur/0000-0002-9217-0845

Keywords

neuron modeling, Fitzhugh-Nagumo Model, Poisson processes, inhomogeneous Poisson, neural spiking, maximum likelihood estimation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

7

WoS Q

Scopus Q

Source

Volume

9

Issue

12

Start Page

End Page

Collections