Modeling and simulation of coupled phase transformation and stress evolution in thermal barrier coatings

dc.authoridsait, ferit/0000-0003-2279-8183
dc.authoridaslan, ozgur/0000-0002-1042-0805
dc.authoridGurses, Ercan/0000-0001-6030-4063
dc.authorscopusid57219569043
dc.authorscopusid15070322000
dc.authorscopusid25521345500
dc.authorwosidsait, ferit/AAV-2125-2021
dc.authorwosidsait, ferit/AAD-1791-2021
dc.authorwosidAslan, Ozgur/S-1171-2016
dc.contributor.authorAslan, Özgür
dc.contributor.authorGurses, Ercan
dc.contributor.authorSait, Ferit
dc.contributor.otherMechanical Engineering
dc.contributor.otherAerospace Engineering
dc.date.accessioned2024-07-05T15:39:03Z
dc.date.available2024-07-05T15:39:03Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Sait, Ferit; Aslan, Ozgur] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkey; [Sait, Ferit; Gurses, Ercan] Middle East Tech Univ, Dept Aerosp Engn, TR-06800 Ankara, Turkeyen_US
dc.descriptionsait, ferit/0000-0003-2279-8183; aslan, ozgur/0000-0002-1042-0805; Gurses, Ercan/0000-0001-6030-4063en_US
dc.description.abstractThe thermally grown oxide layer is known to be responsible for the failure of coating systems due to the generation of severely high stresses. In this work, oxidation induced stresses generated in thermal barrier coating (TBC) systems are investigated for high temperature isothermal oxidation. In that sense, a comprehensive model, where phase transformation is coupled with mechanics is developed for the life-time estimation of TBC systems and a modified version of the Allen-Cahn type phase field approach is adopted in order to model the generation of thermally grown oxide (TGO) in finite strain constitutive framework. The top-coat material behavior is modeled using a rate-dependent Gurson type plasticity for porous materials which also accounts for creep. The results for the isothermal phase transformation analysis and the model validation using experimental results are demonstrated. The capability of the model in predicting the local stresses which is the main variable in the analysis of possible delaminations and accurate lifetime estimation of TBC systems is shown.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey [315M138]en_US
dc.description.sponsorshipThe authors gratefully acknowledge the support from the Scientific and Technological Research Council of Turkey under project number 315M138.en_US
dc.identifier.citation14
dc.identifier.doi10.1016/j.ijplas.2020.102790
dc.identifier.issn0749-6419
dc.identifier.issn1879-2154
dc.identifier.scopus2-s2.0-85093976310
dc.identifier.urihttps://doi.org/10.1016/j.ijplas.2020.102790
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3161
dc.identifier.volume134en_US
dc.identifier.wosWOS:000582334300010
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThermal barrier coatingen_US
dc.subjectOxidationen_US
dc.subjectPhase fielden_US
dc.subjectFEMen_US
dc.subjectFinite strain plasticityen_US
dc.subjectCoupled analysisen_US
dc.subjectPhase interfaceen_US
dc.titleModeling and simulation of coupled phase transformation and stress evolution in thermal barrier coatingsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication7e490860-5183-4e60-b6fe-835260cd301b
relation.isAuthorOfPublication.latestForDiscovery8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isOrgUnitOfPublicationd2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublication50ae167a-5d1c-47d3-846d-89f142eb0c15
relation.isOrgUnitOfPublication.latestForDiscoveryd2cd5950-09a4-4d1d-976e-01f8f7ee4808

Files

Collections