Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models

dc.authoridDoruk, Ozgur/0000-0002-9217-0845
dc.authorscopusid8503734100
dc.authorscopusid7404451228
dc.authorwosidDoruk, Ozgur/T-9951-2018
dc.contributor.authorDoruk, R. Ozgur
dc.contributor.authorZhang, Kechen
dc.contributor.otherElectrical-Electronics Engineering
dc.date.accessioned2024-07-05T15:28:20Z
dc.date.available2024-07-05T15:28:20Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Doruk, R. Ozgur] Atilim Univ, Dept Elect & Elect Engn, Golbasi, Turkey; [Doruk, R. Ozgur; Zhang, Kechen] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USAen_US
dc.descriptionDoruk, Ozgur/0000-0002-9217-0845en_US
dc.description.abstractWe present an adaptive stimulus design method for efficiently estimating the parameters of a dynamic recurrent network model with interacting excitatory and inhibitory neuronal populations. Although stimuli that are optimized for model parameter estimation should, in theory, have advantages over nonadaptive random stimuli, in practice it remains unclear in what way and to what extent an optimal design of time-varying stimuli may actually improve parameter estimation for this common type of recurrent network models. Here we specified the time course of each stimulus by a Fourier series whose amplitudes and phases were determined by maximizing a utility function based on the Fisher information matrix. To facilitate the optimization process, we have derived differential equations that govern the time evolution of the gradients of the utility function with respect to the stimulus parameters. The network parameters were estimated by maximum likelihood from the spike train data generated by an inhomogeneous Poisson process from the continuous network state. The adaptive design process was repeated in a closed loop, alternating between optimal stimulus design and parameter estimation from the updated stimulus-response data. Our results confirmed that, compared with random stimuli, optimally designed stimuli elicited responses with significantly better likelihood values for parameter estimation. Furthermore, all individual parameters, including the time constants and the connection weights, were recovered more accurately by the optimal design method. We also examined how the errors of different parameter estimates were correlated, and proposed heuristic formulas to account for the correlation patterns by an approximate parameter-confounding theory. Our results suggest that although adaptive optimal stimulus design incurs considerable computational cost even for the simplest excitatory-inhibitory recurrent network model, it may potentially help save time in experiments by reducing the number of stimuli needed for network parameter estimation.en_US
dc.description.sponsorshipTurkish Scientific and Technological Research Council (TUBITAK) 2219 Research Program; NIH [R01 DC013698]en_US
dc.description.sponsorshipSupported by Turkish Scientific and Technological Research Council (TUBITAK) 2219 Research Program and NIH grant R01 DC013698. All the computer codes in Matlab for the simulations in this paper are freely available upon request for scientific research and education or any noncommercial use.en_US
dc.identifier.citation1
dc.identifier.doi10.3389/fncir.2018.00119
dc.identifier.issn1662-5110
dc.identifier.pmid30723397
dc.identifier.scopus2-s2.0-85061116101
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3389/fncir.2018.00119
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2780
dc.identifier.volume12en_US
dc.identifier.wosWOS:000456513500001
dc.identifier.wosqualityQ2
dc.institutionauthorDoruk, Reşat Özgür
dc.language.isoenen_US
dc.publisherFrontiers Media Saen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectoptimal stimulus designen_US
dc.subjectFisher information matrixen_US
dc.subjectexcitatory-inhibitory networken_US
dc.subjectinhomogeneous poisson spike trainen_US
dc.subjectmaximum likelihood estimationen_US
dc.subjectparameter confoundingen_US
dc.subjectFourier seriesen_US
dc.subjectsensory codingen_US
dc.titleAdaptive Stimulus Design for Dynamic Recurrent Neural Network Modelsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscoverybbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections