Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Media Sa

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

We present an adaptive stimulus design method for efficiently estimating the parameters of a dynamic recurrent network model with interacting excitatory and inhibitory neuronal populations. Although stimuli that are optimized for model parameter estimation should, in theory, have advantages over nonadaptive random stimuli, in practice it remains unclear in what way and to what extent an optimal design of time-varying stimuli may actually improve parameter estimation for this common type of recurrent network models. Here we specified the time course of each stimulus by a Fourier series whose amplitudes and phases were determined by maximizing a utility function based on the Fisher information matrix. To facilitate the optimization process, we have derived differential equations that govern the time evolution of the gradients of the utility function with respect to the stimulus parameters. The network parameters were estimated by maximum likelihood from the spike train data generated by an inhomogeneous Poisson process from the continuous network state. The adaptive design process was repeated in a closed loop, alternating between optimal stimulus design and parameter estimation from the updated stimulus-response data. Our results confirmed that, compared with random stimuli, optimally designed stimuli elicited responses with significantly better likelihood values for parameter estimation. Furthermore, all individual parameters, including the time constants and the connection weights, were recovered more accurately by the optimal design method. We also examined how the errors of different parameter estimates were correlated, and proposed heuristic formulas to account for the correlation patterns by an approximate parameter-confounding theory. Our results suggest that although adaptive optimal stimulus design incurs considerable computational cost even for the simplest excitatory-inhibitory recurrent network model, it may potentially help save time in experiments by reducing the number of stimuli needed for network parameter estimation.

Description

Doruk, Ozgur/0000-0002-9217-0845

Keywords

optimal stimulus design, Fisher information matrix, excitatory-inhibitory network, inhomogeneous poisson spike train, maximum likelihood estimation, parameter confounding, Fourier series, sensory coding

Turkish CoHE Thesis Center URL

Fields of Science

Citation

1

WoS Q

Q2

Scopus Q

Q3

Source

Volume

12

Issue

Start Page

End Page

Collections