A comparative study on the surface integrity of plastic mold steel due to electric discharge machining

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Mechatronics Engineering
Our purpose in the program is to educate our students for contributing to universal knowledge by doing research on contemporary mechatronics engineering problems and provide them with design, production and publication skills. To reach this goal our post graduate students are offered courses in various areas of mechatronics engineering, encouraged to do research to develop their expertise and their creative side, as well as develop analysis and design skills.

Journal Issue

Abstract

The violent nature of the electric discharge machining (EDM) process leads to a unique structure. on the surface of a machined part. In this study, the influence of electrode material and type of dielectric liquid on the surface integrity of plastic mold steel samples is investigated. The results have shown that regardless of the tool electrode and the dielectric liquid, the white layer is formed on machined surfaces. This layer is composed of cementite (Fe3C) and martensite distributed in retained austenite matrix forming dendritic structures, due to rapid solidification of the molten metal, if carbon-based dielectric liquid is used. The intensity of cracking increases at high pulse durations and low pulse currents. Cracks on the EDM surfaces have been found to follow the pitting arrangements with closed loops and to cross perpendicularly with radial cracks and continue to propagate when another discharge takes place, in the neighborhood. The amount of retained austenite phase and the intensity of microcracks have found to be much less in the white layer of the samples machined in de-ionized water dielectric liquid. The number of globule appendages attached to the surface increased when a carbon-based tool electrode material or a dielectric liquid was used during machining.

Description

Elkoca, Oktay/0000-0002-0007-0741; Erden, Abdulsamet/0000-0002-8084-2018; Ekmekci, Bulent/0000-0002-3632-2197

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

41

WoS Q

Q2

Scopus Q

Q2

Source

Volume

36

Issue

1

Start Page

117

End Page

124

Collections