On the Plane Strain and Plane Stress Solutions of Functionally Graded Rotating Solid Shaft and Solid Disk Problems

dc.authorid Akis, Tolga/0000-0002-6754-4497
dc.authorscopusid 7003983781
dc.authorscopusid 7801646905
dc.authorwosid Eraslan, Ahmet Nedim/AAZ-9946-2020
dc.authorwosid Akis, Tolga/P-6181-2014
dc.contributor.author Eraslan, AN
dc.contributor.author Akış, Tolga
dc.contributor.author Akis, T
dc.contributor.author Akış, Tolga
dc.contributor.other Civil Engineering
dc.contributor.other Civil Engineering
dc.date.accessioned 2024-07-05T15:09:24Z
dc.date.available 2024-07-05T15:09:24Z
dc.date.issued 2006
dc.department Atılım University en_US
dc.department-temp Middle E Tech Univ, Dept Engn Sci, TR-06531 Ankara, Turkey; Atilim Univ, Dept Civil Engn, TR-06836 Ankara, Incek, Turkey en_US
dc.description Akis, Tolga/0000-0002-6754-4497 en_US
dc.description.abstract Closed form solutions to functionally graded rotating solid shaft and rotating solid disk problems are obtained under generalized plane strain and plane stress assumptions, respectively. The nonhomogeneity in the material arises from the fact that the modulus of elasticity of the material varies radially according to two different continuously nonlinear forms: exponential and parabolic. Both forms contain two material parameters and lead to finite values of the modulus of elasticity at the center. Analytical expressions for the stresses at the center are determined. These limiting expressions indicate that at the center of shaft/disk: (i) the stresses are finite, (ii) the radial and the circumferential stress components are equal, and (iii) the values of the stresses are independent of the variation of the modulus of elasticity. It is also shown mathematically that the nonhomogeneous solutions presented here reduce to those of homogeneous ones by an appropriate choice of the material parameters describing the variation of the modulus of elasticity. en_US
dc.identifier.citationcount 92
dc.identifier.doi 10.1007/s00707-005-0276-5
dc.identifier.endpage 63 en_US
dc.identifier.issn 0001-5970
dc.identifier.issue 1-2 en_US
dc.identifier.scopus 2-s2.0-31344435898
dc.identifier.startpage 43 en_US
dc.identifier.uri https://doi.org/10.1007/s00707-005-0276-5
dc.identifier.uri https://hdl.handle.net/20.500.14411/1164
dc.identifier.volume 181 en_US
dc.identifier.wos WOS:000235054200004
dc.identifier.wosquality Q2
dc.institutionauthor Akış, Tolga
dc.language.iso en en_US
dc.publisher Springer Wien en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 99
dc.subject [No Keyword Available] en_US
dc.title On the Plane Strain and Plane Stress Solutions of Functionally Graded Rotating Solid Shaft and Solid Disk Problems en_US
dc.type Article en_US
dc.wos.citedbyCount 92
dspace.entity.type Publication
relation.isAuthorOfPublication c5c8784e-c129-499c-8a15-85aa6cf5ce96
relation.isAuthorOfPublication c5c8784e-c129-499c-8a15-85aa6cf5ce96
relation.isAuthorOfPublication c5c8784e-c129-499c-8a15-85aa6cf5ce96
relation.isAuthorOfPublication.latestForDiscovery c5c8784e-c129-499c-8a15-85aa6cf5ce96
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication.latestForDiscovery 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections