Fixed Point Theorems in Cone Banach Spaces

dc.contributor.author Karapinar, Erdal
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:33:53Z
dc.date.available 2024-07-05T14:33:53Z
dc.date.issued 2009
dc.description KARAPINAR, ERDAL/0000-0002-6798-3254 en_US
dc.description.abstract In this manuscript, a class of self-mappings on cone Banach spaces which have at least one fixed point is considered. More precisely, for a closed and convex subset C of a cone Banach space with the norm parallel to x parallel to(P) = d(x, 0), if there exist a, b, s and T : C -> C satisfies the conditions 0 <= s + vertical bar a vertical bar - 2b < 2(a + b) and 4ad(Tx, Ty) + b(d(x, Tx) + d(y, Ty)) <= sd(x, y) for all x, y is an element of C, then T has at least one Fixed point. Copyright (C) 2009 Erdal Karapinar. en_US
dc.identifier.doi 10.1155/2009/609281
dc.identifier.issn 1687-1812
dc.identifier.scopus 2-s2.0-77953229527
dc.identifier.uri https://doi.org/10.1155/2009/609281
dc.identifier.uri https://hdl.handle.net/20.500.14411/984
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof Fixed Point Theory and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Fixed Point Theorems in Cone Banach Spaces en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id KARAPINAR, ERDAL/0000-0002-6798-3254
gdc.author.institutional Karapınar, Erdal
gdc.author.scopusid 16678995500
gdc.author.wosid KARAPINAR, ERDAL/H-3177-2011
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 2009
gdc.identifier.openalex W2092191304
gdc.identifier.wos WOS:000274885100001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 15.0
gdc.oaire.influence 1.1179922E-8
gdc.oaire.isgreen false
gdc.oaire.keywords T57-57.97
gdc.oaire.keywords QA299.6-433
gdc.oaire.keywords Applied mathematics. Quantitative methods
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Geometry and Topology
gdc.oaire.keywords Analysis
gdc.oaire.keywords Normed linear spaces and Banach spaces; Banach lattices
gdc.oaire.keywords Fixed-point theorems
gdc.oaire.keywords Other ``topological'' linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.)
gdc.oaire.keywords Fixed-point and coincidence theorems (topological aspects)
gdc.oaire.popularity 1.8415403E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 12.79425492
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 46
gdc.plumx.crossrefcites 38
gdc.plumx.mendeley 14
gdc.plumx.scopuscites 89
gdc.scopus.citedcount 89
gdc.wos.citedcount 72
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections