On Idempotency of Linear Combinations of Idempotent Matrices

dc.authorid Özdemir, Halim/0000-0003-4624-437X
dc.authorscopusid 7004290618
dc.authorscopusid 9276702800
dc.authorwosid Özdemir, Halim/AAA-9437-2021
dc.contributor.author Özdemir, H
dc.contributor.author Özban, AY
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:09:44Z
dc.date.available 2024-07-05T15:09:44Z
dc.date.issued 2004
dc.department Atılım University en_US
dc.department-temp Sakarya Univ, Dept Math, TR-54100 Mithatpasa, Adapazari, Turkey; Atilim Univ, Dept Math, TR-06836 Incek, Ankara, Turkey en_US
dc.description Özdemir, Halim/0000-0003-4624-437X en_US
dc.description.abstract P-1, P-2 and P-3 being any three different nonzero mutually commutative n x n idempotent matrices, and C-1 C-2 and C-3 being nonzero scalars, the problem of characterizing some situations, where a linear combination of the form P = c(1)P(1) + c(2)P(2) or P = c(1)P(1) + c(2)P(2) + c(3)P(3), is also an idempotent matrix has been considered. Moreover two interesting results about the idempotency of linear combinations of 2 x 2 idempotent matrices and 3 x 3 idempotent matrices have been given. A statistical interpretation of the idempotency problem considered in this study has also been pointed out. (C) 2003 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 32
dc.identifier.doi 10.1016/j.amc.2003.10.027
dc.identifier.endpage 448 en_US
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-5644244491
dc.identifier.startpage 439 en_US
dc.identifier.uri https://doi.org/10.1016/j.amc.2003.10.027
dc.identifier.uri https://hdl.handle.net/20.500.14411/1229
dc.identifier.volume 159 en_US
dc.identifier.wos WOS:000224774100014
dc.identifier.wosquality Q1
dc.institutionauthor Özban, Ahmet Yaşar
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 28
dc.subject similar matrices en_US
dc.subject diagonalization en_US
dc.subject idempotent matrices en_US
dc.subject quadratic forms en_US
dc.subject Chi-square distribution en_US
dc.title On Idempotency of Linear Combinations of Idempotent Matrices en_US
dc.type Article en_US
dc.wos.citedbyCount 25
dspace.entity.type Publication
relation.isAuthorOfPublication 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isAuthorOfPublication.latestForDiscovery 441f0f87-7ece-46f6-b47b-51c64752df12
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections