On the Eigenstructure of the Modified Bernstein Operators

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Starting from the well-known work of Cooper and Waldron published in 2000, the eigenstructure of various Bernstein-type operators has been investigated by many researchers. In this work, the eigenvalues and eigenvectors of the modified Bernstein operators Q(n) have been studied. These operators were introduced by S. N. Bernstein himself, in 1932, for the purpose of accelerating the approximation rate for smooth functions. Here, the explicit formulae for the eigenvalues and corresponding eigenpolynomials together with their limiting behavior are established. The results show that although some outcomes are similar to those for the Bernstein operators, there are essentially different ones as well.

Description

Ostrovska, Sofiya/0000-0003-1842-7953; Turan, Mehmet/0000-0002-1718-3902

Keywords

Bernstein operators, eigenvalues, eigenvectors, modified Bernstein operators, Stirling numbers

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q3

Scopus Q

Source

Volume

43

Issue

16

Start Page

1821

End Page

1835

Collections