On the Eigenvectors of the <i>q</I>-bernstein Operators

dc.contributor.author Ostrovska, S.
dc.contributor.author Turan, M.
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:26:59Z
dc.date.available 2024-07-05T14:26:59Z
dc.date.issued 2014
dc.description Turan, Mehmet/0000-0002-1718-3902 en_US
dc.description.abstract In this article, both the eigenvectors and the eigenvalues of the q-Bernstein operators have been studied. Explicit formulae are presented for the eigenvectors, whose limit behavior is determined both in the case 0<q<1 and in the case q>1. Because the classical case, where q=1, was investigated exhaustively by S. Cooper and S. Waldron back in 2000, the present article also discusses the related similarities and distinctions with the results in the classical case. Copyright (c) 2013 John Wiley & Sons, Ltd. en_US
dc.identifier.doi 10.1002/mma.2814
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.scopus 2-s2.0-84893958342
dc.identifier.uri https://doi.org/10.1002/mma.2814
dc.identifier.uri https://hdl.handle.net/20.500.14411/209
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Mathematical Methods in the Applied Sciences
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein operator en_US
dc.subject eigenvalues en_US
dc.subject eigenvectors en_US
dc.title On the Eigenvectors of the <i>q</I>-bernstein Operators en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Turan, Mehmet/0000-0002-1718-3902
gdc.author.institutional Ostrovska, Sofiya
gdc.author.institutional Turan, Mehmet
gdc.author.scopusid 55748219400
gdc.author.scopusid 35782583700
gdc.author.wosid Turan, Mehmet/AGZ-7356-2022
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, S.; Turan, M.] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 570 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 562 en_US
gdc.description.volume 37 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2033216050
gdc.identifier.wos WOS:000330886600010
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 3.317051E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Approximation by polynomials
gdc.oaire.keywords Linear operators on function spaces (general)
gdc.oaire.keywords \(q\)-integers
gdc.oaire.keywords Approximation by positive operators
gdc.oaire.keywords Eigenvalue problems for linear operators
gdc.oaire.keywords \(q\)-Bernstein operator
gdc.oaire.keywords eigenvalues
gdc.oaire.keywords eigenvectors
gdc.oaire.keywords \(q\)-binomial coefficients
gdc.oaire.popularity 3.919876E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.59256171
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 7
gdc.plumx.crossrefcites 4
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.wos.citedcount 9
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections