Distortion in the Finite Determination Result for Embeddings of Locally Finite Metric Spaces Into Banach Spaces
| dc.contributor.author | Ostrovska, S. | |
| dc.contributor.author | Ostrovskii, M. I. | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:28:24Z | |
| dc.date.available | 2024-07-05T15:28:24Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | Given a Banach space X and a real number alpha >= 1, we write: (1) D(X) <= alpha if, for any locally finite metric space A, all finite subsets of which admit bilipschitz embeddings into X with distortions <= C, the space A itself admits a bilipschitz embedding into X with distortion <= alpha . C; (2) D(X) = alpha(+) if, for every epsilon > 0, the condition D(X) <= alpha + epsilon holds, while D(X) <= alpha does not; (3) D(X) <= alpha(+) if D(X) = alpha(+) or D(X) <= alpha. It is known that D(X) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1) D((circle plus(infinity)(n= 1) X-n)(p)) <= 1(+) for every nested family of finite-dimensional Banach spaces {X-n}(n=1)(infinity) and every 1 <= p <= 8 infinity. (2) D((circle plus 8(n=1)(infinity)l(infinity)(n) )(p)) = 1(+) for 1 < p < infinity. (3) D(X) <= 4(+) for every Banach space X with no nontrivial cotype. Statement (3) is a strengthening of the Baudier-Lancien result (2008). | en_US |
| dc.description.sponsorship | National Science Foundation [DMS-1201269, DMS-1700176]; Summer Support of Research program of St. John's University | en_US |
| dc.description.sponsorship | M. I. Ostrovskii gratefully acknowledges the support from the National Science Foundation DMS-1201269 and DMS-1700176 and the Summer Support of Research program of St. John's University during different stages of work in this paper. | en_US |
| dc.identifier.doi | 10.1017/S0017089518000022 | |
| dc.identifier.issn | 0017-0895 | |
| dc.identifier.issn | 1469-509X | |
| dc.identifier.scopus | 2-s2.0-85057749674 | |
| dc.identifier.uri | https://doi.org/10.1017/S0017089518000022 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2796 | |
| dc.language.iso | en | en_US |
| dc.publisher | Cambridge Univ Press | en_US |
| dc.relation.ispartof | Glasgow Mathematical Journal | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | Distortion in the Finite Determination Result for Embeddings of Locally Finite Metric Spaces Into Banach Spaces | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.scopusid | 7006870450 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Ostrovska, S.] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey; [Ostrovskii, M. I.] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA | en_US |
| gdc.description.endpage | 47 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 33 | en_US |
| gdc.description.volume | 61 | en_US |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W3100691144 | |
| gdc.identifier.wos | WOS:000451885500004 | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 2.7311167E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Mathematics - Functional Analysis | |
| gdc.oaire.keywords | Mathematics - Metric Geometry | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Metric Geometry (math.MG) | |
| gdc.oaire.keywords | 46B85, 46B20 | |
| gdc.oaire.keywords | Functional Analysis (math.FA) | |
| gdc.oaire.popularity | 1.9793973E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.84 | |
| gdc.openalex.normalizedpercentile | 0.69 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.scopus.citedcount | 5 | |
| gdc.wos.citedcount | 6 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |