Age based preventive replacement policy for discrete time coherent systems with independent and identical components

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

The paper is concerned with an age based preventive replacement policy for an arbitrary coherent system that consists of components that are independent and have common discrete lifetime distribution. The system having an arbitrary structure is replaced preventively after a specific number of cycles or correctively at its failure time. The necessary conditions for the unique and finite replacement cycle that minimize the expected cost per unit of time are obtained. The policy is studied for some particular system models including the well-known k-out-of -n structure. The findings of the paper extend the results in the literature from single unit and parallel systems to an arbitrary coherent system. Numerical results are presented for particular discrete component lifetime distributions.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Age replacement, Coherent system, Discrete distribution

Turkish CoHE Thesis Center URL

Fields of Science

Citation

4

WoS Q

Q1

Scopus Q

Source

Volume

240

Issue

Start Page

End Page

Collections