Thermoluminescence in gallium sesquisulfide single crystals: usual and unusual heating rate dependencies

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Gmbh

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Thermoluminescence (TL) experiments were conducted for Ga2S3 crystals to obtain information about trapping parameters. TL measurements were performed from 10 to 300 K with varying heating rates in the range of 0.2-0.8 K/s. Two TL glow peaks centered at 44K (peak A) and 91 K (peak B) were observed at heating rate of beta=0.5 K/s. For peak A, TL intensity decreased whereas that for peak B increased with elevating the heating rates that means anomalous heating rate occurred for peak B. TL glow curves were analyzed using initial rise method to find activation energies of traps. Distribution of trap centers was investigated using T-max - T-stop method. Quasi-continuous distributions with increasing activation energies from 40 to 135 meV and 193 to 460 meV were attributed to trap centers A and B, respectively. (C) 2018 Elsevier GmbH. All rights reserved.

Description

Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686

Keywords

Thermoluminescence, Defects, Crystals

Turkish CoHE Thesis Center URL

Citation

5

WoS Q

Q2

Scopus Q

Source

Volume

165

Issue

Start Page

132

End Page

136

Collections