New Lmi-Based Criteria for Global Robust Stability of Delayed Neural Networks

dc.contributor.author Singh, Vimal
dc.date.accessioned 2024-07-05T15:16:14Z
dc.date.available 2024-07-05T15:16:14Z
dc.date.issued 2010
dc.description.abstract Some novel, linear matrix inequality based, criteria for the uniqueness and global robust stability of the equilibrium point of Hopfield-type neural networks with delay are presented. A comparison of the present criteria with the previous criteria is made. (C) 2010 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.apm.2010.01.005
dc.identifier.issn 0307-904X
dc.identifier.issn 1872-8480
dc.identifier.scopus 2-s2.0-77952884717
dc.identifier.uri https://doi.org/10.1016/j.apm.2010.01.005
dc.identifier.uri https://hdl.handle.net/20.500.14411/1616
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.ispartof Applied Mathematical Modelling
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dynamical interval neural networks en_US
dc.subject Equilibrium analysis en_US
dc.subject Global robust stability en_US
dc.subject Hopfield neural networks en_US
dc.subject Lyapunov methods en_US
dc.subject Neural networks en_US
dc.title New Lmi-Based Criteria for Global Robust Stability of Delayed Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 7404651584
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 2965 en_US
gdc.description.issue 10 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 2958 en_US
gdc.description.volume 34 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2080148874
gdc.identifier.wos WOS:000278690300024
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.2868275E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Modelling and Simulation
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords equilibrium analysis
gdc.oaire.keywords Stability theory of functional-differential equations
gdc.oaire.keywords Hopfield neural networks
gdc.oaire.keywords dynamical interval neural networks
gdc.oaire.keywords Robust stability
gdc.oaire.keywords Neural networks for/in biological studies, artificial life and related topics
gdc.oaire.keywords neural networks
gdc.oaire.keywords global robust stability
gdc.oaire.keywords Lyapunov methods
gdc.oaire.popularity 9.37112E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 3.33831208
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 12
gdc.plumx.crossrefcites 12
gdc.plumx.facebookshareslikecount 27
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 16
gdc.virtual.author Sıngh, Vımal
gdc.wos.citedcount 11
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections