Identification of Materials With Magnetic Characteristics by Neural Networks

dc.authoridKaracor, Deniz/0000-0001-6961-8966
dc.authoridSazli, Murat/0000-0001-9235-3679
dc.authoridŞENSOY, GÖKHAN/0000-0003-4815-8061
dc.authorscopusid24473589800
dc.authorscopusid19638410900
dc.authorscopusid19639054500
dc.authorscopusid49662229400
dc.authorscopusid54909245800
dc.authorscopusid15078749000
dc.authorwosidKaracor, Deniz/IAO-9194-2023
dc.authorwosidSazli, Murat/AAH-6663-2020
dc.authorwosidKaracor, Deniz/AAH-3088-2020
dc.authorwosidŞENSOY, GÖKHAN/KQU-4739-2024
dc.authorwosidEge, Yavuz/AAD-7800-2019
dc.contributor.authorNazlibilek, Sedat
dc.contributor.authorNazlıbilek, Sedat
dc.contributor.authorEge, Yavuz
dc.contributor.authorKalender, Osman
dc.contributor.authorSensoy, Mehmet Gokhan
dc.contributor.authorKaracor, Deniz
dc.contributor.authorSazh, Murat Husnu
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T15:11:04Z
dc.date.available2024-07-05T15:11:04Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-temp[Ege, Yavuz] Balikesir Univ, Dept Phys, Necatibey Fac Educ, TR-10100 Balikesir, Turkey; [Nazlibilek, Sedat] Bilkent Univ, Nanotechnol Res Ctr Nanotam, TR-06800 Ankara, Turkey; [Nazlibilek, Sedat] Atilim Univ, Fac Engn, Dept Mech Engn, TR-06800 Ankara, Turkey; [Kalender, Osman] Turkish Mil Coll, Dept Tech Sci, TR-06100 Ankara, Turkey; [Sensoy, Mehmet Gokhan] Middle E Tech Univ, Fac Arts & Sci, Dept Phys, TR-06800 Ankara, Turkey; [Karacor, Deniz; Sazh, Murat Husnu] Ankara Univ, Fac Engn, Dept Elect Engn, TR-06100 Ankara, Turkeyen_US
dc.descriptionKaracor, Deniz/0000-0001-6961-8966; Sazli, Murat/0000-0001-9235-3679; ŞENSOY, GÖKHAN/0000-0003-4815-8061;en_US
dc.description.abstractIn industry, there is a need for remote sensing and autonomous method for the identification of the ferromagnetic materials used. The system is desired to have the characteristics of improved accuracy and low power consumption. It must also autonomous and fast enough for the decision. In this work, the details of inaccurate and low power remote sensing mechanism and autonomous identification system are given. The remote sensing mechanism utilizes KMZ51 anisotropic magneto-resistive sensor with high sensitivity and low power consumption. The images and most appropriate mathematical curves and formulas for the magnetic anomalies created by the magnetic materials are obtained by 2-D motion of the sensor over the material. The contribution of the paper is the use of the images obtained by the measurement of the perpendicular component of the Earth magnetic field that is a new method for the purpose of identification of an unknown magnetic material. The identification system is based on two kinds of neural network structures. The MultiLayer Perceptron (MLP) and the Radial Basis Function (RBF) network types are used for training of the neural networks. In this work, 23 different materials such as SAE/AISI 1030, 1035, 1040, 1060, 4140 and 8260 are identified. Besides the ferromagnetic materials, three objects are also successfully identified. Two of them are anti-personal and anti-tank mines and one is an empty can box. It is shown that the identification system can also be used as a buried mine identification system. The neural networks are trained with images which are originally obtained by the remote sensing system and the system is operated by images with added Gaussian white noises. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.en_US
dc.identifier.citation18
dc.identifier.doi10.1016/j.measurement.2011.12.017
dc.identifier.endpage744en_US
dc.identifier.issn0263-2241
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84857458079
dc.identifier.startpage734en_US
dc.identifier.urihttps://doi.org/10.1016/j.measurement.2011.12.017
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1401
dc.identifier.volume45en_US
dc.identifier.wosWOS:000301877500011
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnisotropic magnetoresistive sensor (AMR)en_US
dc.subjectMagnetic anomalyen_US
dc.subjectMagnetic materialsen_US
dc.subjectRemote sensingen_US
dc.subjectNeural networksen_US
dc.titleIdentification of Materials With Magnetic Characteristics by Neural Networksen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationde094a03-1e24-470f-bb3b-db66e9f73b89
relation.isAuthorOfPublication.latestForDiscoveryde094a03-1e24-470f-bb3b-db66e9f73b89
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscoverye2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections