Control of Hopf Bifurcations in Hodgkin-Huxley Neurons by Automatic Temperature Manipulation

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Anka Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

The purpose of this research is to revisit the bifurcation control problem in Hodgkin-Huxley neurons. As a difference from the classical membrane potential feedback to manipulate the external current injection, we will actuate the temperature of the neural environment to control the bifurcations. In order to achieve this a linear feedback from the membrane potential is established to generate a time varying temperature profile. The considered bifurcating parameter is the external current injection. Upon finishing the controllers, the bifurcation analysis against the changes in external current injection is repeated in order to see the possibility of relapse of any bifurcation phenomena at nearby points. In addition to that, simulations are also provided to show the performances of the controllers.

Description

Doruk, Ozgur/0000-0002-9217-0845

Keywords

Hodgkin-Huxley Models, HopfBifurcation, Linear Feedback, Temperature Effects, MATCONT

Turkish CoHE Thesis Center URL

Fields of Science

Citation

5

WoS Q

Scopus Q

Source

Volume

16

Issue

2

Start Page

59

End Page

74

Collections