Design Optimization of Real-Size Steel Frames Using Monitored Convergence Curve

dc.authoridKazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid57193753354
dc.contributor.authorAzad, Saeid Kazemzadeh
dc.contributor.authorAzad, Saeıd Kazemzadeh
dc.contributor.authorAzad, Saeıd Kazemzadeh
dc.contributor.otherDepartment of Civil Engineering
dc.contributor.otherDepartment of Civil Engineering
dc.date.accessioned2024-07-05T15:39:30Z
dc.date.available2024-07-05T15:39:30Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Azad, Saeid Kazemzadeh] Atilim Univ, Dept Civil Engn, Ankara, Turkeyen_US
dc.descriptionKazemzadeh Azad, Saeid/0000-0001-9309-607Xen_US
dc.description.abstractIt is an undeniable fact that there are main challenges in the use of metaheuristics for optimal design of real-size steel frames in practice. In general, steel frame optimization problems usually require an inordinate amount of processing time where the main portion of computational effort is devoted to myriad structural response computations during the optimization iterations. Moreover, the inherent complexity of steel frame optimization problems may result in poor performance of even contemporary or advanced metaheuristics. Beside the challenging nature of such problems, significant difference in geometrical properties of two adjacent steel sections in a list of available profiles can also mislead the optimization algorithm and may result in trapping the algorithm in a poor local optimum. Consequently, akin to other challenging engineering optimization instances, significant fluctuations could be observed in the final results of steel frame optimization problems over multiple runs even using contemporary metaheuristics. Accordingly, the main focus of this study is to improve the solution quality as well as the stability of results in metaheuristic optimization of real-size steel frames using a recently developed framework so-called monitored convergence curve (MCC). Two enhanced variants of the well-known big bang-big crunch algorithm are adopted as typical contemporary metaheuristic algorithms to evaluate the usefulness of the MCC framework in steel frame optimization problems. The numerical experiments using challenging test examples of real-size steel frames confirm the efficiency of the MCC integrated metaheuristics versus their standard counterparts.en_US
dc.identifier.citationcount16
dc.identifier.doi10.1007/s00158-020-02692-3
dc.identifier.endpage288en_US
dc.identifier.issn1615-147X
dc.identifier.issn1615-1488
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85089293139
dc.identifier.scopusqualityQ1
dc.identifier.startpage267en_US
dc.identifier.urihttps://doi.org/10.1007/s00158-020-02692-3
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3232
dc.identifier.volume63en_US
dc.identifier.wosWOS:000558632700001
dc.identifier.wosqualityQ1
dc.institutionauthorAzad, Saeıd Kazemzadeh
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount16
dc.subjectStructural optimizationen_US
dc.subjectMonitored convergence curveen_US
dc.subjectSteel framesen_US
dc.subjectDiscrete optimizationen_US
dc.subjectMetaheuristic techniquesen_US
dc.subjectSizing optimizationen_US
dc.titleDesign Optimization of Real-Size Steel Frames Using Monitored Convergence Curveen_US
dc.typeArticleen_US
dc.wos.citedbyCount17
dspace.entity.typePublication
relation.isAuthorOfPublicationa5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublicationa5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublicationa5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscoverya5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isOrgUnitOfPublication238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery238c4130-e9ea-4b1c-9dea-772c4a0dad39

Files

Collections