Inductance Measurement Methods for Surface-Mount Permanent Magnet Machines

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

Analytical performance estimation of a permanent magnet (PM) motor requires an accurate equivalent circuit model. In a lumped electrical model of a PM motor, resistance and inductances appear as passive elements, which are used to represent the phase winding resistance, inductance, core loss, etc. There is currently no available standard for parameter measurement of PM motors. In the literature, there are many studies on inductance measurement. However, they are applied to different types of motors. The purpose of this study is to evaluate those different inductance measurement methods, on the same motors, to identify whether they lead to the same result. Also, it was aimed to find out the difficulties involved in the measurement process. This study concentrates on determining the d -axis and q -axis inductances of two different surface-mount PM motors at standstill and under running conditions. The standstill measurement methods evaluated include the "current decay " method and the "dc inductance bridge " method as well as more common methods. The dependence of the inductances on the current magnitude, frequency, and excitation signal waveform is investigated. Measurements with PWM and sinusoidal ac voltage excitation are found to give similar results. The tests indicated that the "current decay " method is prone to measurement errors especially when the phase resistance is low. It is discovered that inductance measurements from standstill tests are independent of frequency for all practical purposes. Next, the same inductances are measured, while the test motors are running. The methods considered include; inductance measurement from no-load test, zero power factor (PF) load test, and unity PF load test; while the machine is in generating mode. Furthermore, a new inductance measurement method is introduced where the measurement is made while the test motor is driven with a vector-controlled drive. Finally, inductance measurement results from different standstill tests and running tests are compared and evaluated.

Description

Ertan, H. Bulent/0000-0003-4128-8867

Keywords

Inductance measurement, Permanent magnet motors, Current measurement, Inductance, Voltage measurement, Electrical resistance measurement, Brushless motors, Brushless PM machines, inductance measurement, measurement standards, modeling, permanent magnet (PM) machines, servo motors, testing

Turkish CoHE Thesis Center URL

Citation

2

WoS Q

Q1

Scopus Q

Source

Volume

72

Issue

Start Page

End Page

Collections