Synthesis and Enhanced Photocatalytic Activity of Nitrogen-Doped Triphasic Tio<sub>2</Sub> Nanoparticles

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

TiO2 nanoparticles of the single anatase phase, binary anatase-brookite phases, and ternary anatase-brookite-rutile phases were synthesized using an HNO3-catalyzed hydrothermal process. The types and amounts of phases varied depending on the hydrothermal synthesis conditions. The results revealed that N dissolves in different amounts and chemical states, depending on the phases present and their proportions in the nano particles. Brookite and rutile nanoparticles oriented through one direction were found to be crystallized by the surface transformation from anatase. Photocatalytic activity tests, evaluated by degradation of methylene blue (MB) under ultraviolet (UV) and visible light illumination, revealed that the N-doped TiO2 nanoparticles containing a ternary-phase mixture had the best photocatalytic activity. The MB degradation of the visible light-active nanoparticles was three times better than that of a commercially available well-known TiO2 powder, P25 under UV illumination. The enhanced photoactivity was attributed to the following: i) a high surface area, ii) suppression of the recombination of electron-hole pairs with ternary-phase mixture crystallized in heterojunctions, iii) larger anatase phase content, and iv) narrower band gap and facilitation of charge separation by dissolved N atoms.

Description

Ozturk, Abdullah/0000-0002-1525-1561; Kim, SOO YOUNG/0000-0002-0685-7991; Erdogan, Nursev/0000-0001-6891-7964; Park, Jongee/0000-0003-1415-6906; Bouziani, asmae/0000-0001-6045-3608; Ozturk, Abdullah/0000-0002-1525-1561; Omastova, Maria/0000-0003-0210-5861; Micusik, Matej/0000-0003-2751-5381

Keywords

Titania, Hydrothermal synthesis, Phase transformation, N doping, Photocatalytic activity

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
19

Source

Journal of Photochemistry and Photobiology A: Chemistry

Volume

377

Issue

Start Page

92

End Page

100

Collections

PlumX Metrics
Citations

CrossRef : 19

Scopus : 19

Captures

Mendeley Readers : 24

SCOPUS™ Citations

19

checked on Feb 02, 2026

Web of Science™ Citations

18

checked on Feb 02, 2026

Page Views

1

checked on Feb 02, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.02741309

Sustainable Development Goals

SDG data is not available