Minimal Truncation Error Constants for Runge-Kutta Method for Stochastic Optimal Control Problems
| dc.contributor.author | Bakan, Hacer Oz | |
| dc.contributor.author | Bakan, Hacer Öz | |
| dc.contributor.author | Yilmaz, Fikriye | |
| dc.contributor.author | Weber, Gerhard-Wilhelm | |
| dc.contributor.author | Bakan, Hacer Öz | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | Mathematics | |
| dc.date.accessioned | 2024-07-05T15:27:32Z | |
| dc.date.available | 2024-07-05T15:27:32Z | |
| dc.date.issued | 2018 | |
| dc.description | Yılmaz, Fikriye/0000-0003-0002-9201; OZ BAKAN, HACER/0000-0001-8090-5552; Weber, Gerhard-Wilhelm/0000-0003-0849-7771 | en_US |
| dc.description.abstract | In this work, we obtain strong order-1 conditions with minimal truncation error constants of Runge-Kutta method for the optimal control of stochastic differential equations (SDEs). We match Stratonovich-Taylor expansion of the exact solution with Stratonovich-Taylor expansion of our approximation method that is defined by the Runge-Kutta scheme, term by term, in order to get the strong order-1 conditions. By a conclusion and an outlook to future research, the paper ends. (C) 2017 Elsevier B.V. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.cam.2017.10.011 | |
| dc.identifier.issn | 0377-0427 | |
| dc.identifier.issn | 1879-1778 | |
| dc.identifier.scopus | 2-s2.0-85032482891 | |
| dc.identifier.uri | https://doi.org/10.1016/j.cam.2017.10.011 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2687 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Journal of Computational and Applied Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Optimal control | en_US |
| dc.subject | Runge-Kutta method | en_US |
| dc.subject | Stochastic differential equation | en_US |
| dc.subject | Stratonovich-Taylor expansion | en_US |
| dc.subject | Numerical solution | en_US |
| dc.subject | Minimal truncation error | en_US |
| dc.title | Minimal Truncation Error Constants for Runge-Kutta Method for Stochastic Optimal Control Problems | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Yılmaz, Fikriye/0000-0003-0002-9201 | |
| gdc.author.id | OZ BAKAN, HACER/0000-0001-8090-5552 | |
| gdc.author.id | Weber, Gerhard-Wilhelm/0000-0003-0849-7771 | |
| gdc.author.scopusid | 57196274876 | |
| gdc.author.scopusid | 55795348100 | |
| gdc.author.scopusid | 55634220900 | |
| gdc.author.wosid | Yılmaz, Fikriye/AAX-1508-2020 | |
| gdc.author.wosid | Weber, Gerhard-Wilhelm/V-2046-2017 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Bakan, Hacer Oz] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey; [Yilmaz, Fikriye] Gazi Univ, Dept Math, TR-06500 Ankara, Turkey; [Weber, Gerhard-Wilhelm] Middle East Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey | en_US |
| gdc.description.endpage | 207 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 196 | en_US |
| gdc.description.volume | 331 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2766742222 | |
| gdc.identifier.wos | WOS:000417008000015 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 3.1680671E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations | |
| gdc.oaire.keywords | Numerical optimization and variational techniques | |
| gdc.oaire.keywords | optimal control | |
| gdc.oaire.keywords | Optimal stochastic control | |
| gdc.oaire.keywords | Runge-Kutta method | |
| gdc.oaire.keywords | stochastic differential equation | |
| gdc.oaire.keywords | minimal truncation error | |
| gdc.oaire.keywords | Stratonovich-Taylor expansion | |
| gdc.oaire.keywords | Control/observation systems governed by ordinary differential equations | |
| gdc.oaire.popularity | 6.585E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.6606665 | |
| gdc.openalex.normalizedpercentile | 0.86 | |
| gdc.opencitations.count | 10 | |
| gdc.plumx.crossrefcites | 6 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 11 | |
| gdc.scopus.citedcount | 11 | |
| gdc.virtual.author | Bakan, Hacer Öz | |
| gdc.wos.citedcount | 10 | |
| relation.isAuthorOfPublication | 92156e2b-16a6-4624-bc3d-da86a7aff925 | |
| relation.isAuthorOfPublication | 92156e2b-16a6-4624-bc3d-da86a7aff925 | |
| relation.isAuthorOfPublication | 92156e2b-16a6-4624-bc3d-da86a7aff925 | |
| relation.isAuthorOfPublication.latestForDiscovery | 92156e2b-16a6-4624-bc3d-da86a7aff925 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
