Dvoretzky-Type Theorem for Locally Finite Subsets of a Hilbert Space

dc.contributor.author Catrina, Florin
dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Ostrovskii, Mikhail I.
dc.date.accessioned 2025-10-06T17:48:59Z
dc.date.available 2025-10-06T17:48:59Z
dc.date.issued 2025
dc.description.abstract The main result of the paper: Given any epsilon > 0, every locally finite subset of l(2) admits a (1 + epsilon)-bilipschitz embedding into an arbitrary infinite-dimensional Banach space. The result is based on two results which are of independent interest: (1) A direct sum of two finite-dimensional Euclidean spaces contains a sub-sum of a controlled dimension which is epsilon-close to a direct sum with respect to a 1-unconditional basis in a two-dimensional space. (2) For any finite-dimensional Banach space Y and its direct sum X with itself with respect to a 1-unconditional basis in a two-dimensional space, there exists a (1 + epsilon)-bilipschitz embedding of Y into X which on a small ball coincides with the identity map onto the first summand and on the complement of a large ball coincides with the identity map onto the second summand. en_US
dc.description.sponsorship Atilim University; National Science Foundation [NSF DMS-1953773] en_US
dc.description.sponsorship The second-named author gratefully acknowledges the support of Atilim University as this work was mostly conducted while she was on research leave supported by Atilim University. Also, she expresses her sincere gratitude to professor G. M. Feldman (B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine) for his invitation to the Department of Function Theory for this research leave and his help during her stay at the Department. The third-named author gratefully acknowledges the support by the National Science Foundation grant NSF DMS-1953773. en_US
dc.identifier.doi 10.5802/aif.3672
dc.identifier.issn 0373-0956
dc.identifier.issn 1777-5310
dc.identifier.scopus 2-s2.0-105014409907
dc.identifier.uri https://doi.org/10.5802/aif.3672
dc.identifier.uri https://hdl.handle.net/20.500.14411/10853
dc.language.iso en en_US
dc.publisher Annales Inst Fourier en_US
dc.relation.ispartof Annales de l’institut Fourier en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bilipschitz Embedding en_US
dc.subject Dvoretzky Theorem en_US
dc.subject Finite-Dimensional Decomposition en_US
dc.subject Unconditional Basis en_US
dc.title Dvoretzky-Type Theorem for Locally Finite Subsets of a Hilbert Space en_US
dc.title Dvoretzky-Type Theorem for Locally Finite Subsets of a Hilbert Space
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.wosid Ostrovska, Sofiya/Aaa-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Catrina, Florin; Ostrovskii, Mikhail I.] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA; [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye en_US
gdc.description.endpage 2607 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2565 en_US
gdc.description.volume 75 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4407294165
gdc.identifier.wos WOS:001597330500009
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Mathematics - Functional Analysis
gdc.oaire.keywords Mathematics - Metric Geometry
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords 46B85, 30L05, 46B07, 51F30
gdc.oaire.keywords Metric Geometry (math.MG)
gdc.oaire.keywords Functional Analysis (math.FA)
gdc.oaire.keywords Lipschitz and coarse geometry of metric spaces
gdc.oaire.keywords Dvoretzky theorem
gdc.oaire.keywords finite-dimensional decomposition
gdc.oaire.keywords Local theory of Banach spaces
gdc.oaire.keywords Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
gdc.oaire.keywords Geometric embeddings of metric spaces
gdc.oaire.keywords bilipschitz embedding
gdc.oaire.keywords unconditional
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.06
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Ostrovska, Sofiya
gdc.wos.citedcount 0
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections