Temperature- and photo-excitation effects on the electrical properties of Tl<sub>4</sub>Se<sub>3</sub>S crystals

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The extrinsic energy states and the recombination mechanism in the Tl4Se3S chain crystals are being investigated by means of electrical and photoelectrical measurements for the first time. The electrical resistivity is observed to decrease exponentially with increasing temperature. The analysis of this dependence revealed three impurity levels located at 280, 68 and 48 meV. The photocurrent is observed to increase as temperature decreases down to a minimum temperature T-m=200 K. Below this temperature the photocurrent decreases upon temperature lowering. Two photoconductivity activation energies of 10 and 100 meV were determined for the temperature ranges below and above T-m, respectively. The photocurrent (I-ph) versus illumination intensity (F) dependence follows the I-ph proportional to F-gamma law. The value of gamma decreases from similar to 1.0 at 300K to similar to 0.34 at 160K. The change in the value of gamma with temperature is attributed to the exchange of roles between the monomolecular recombination at the surface near room temperature and trapping centers in the crystal, which become dominant as temperature decreases.

Description

Gasanly, Nizami/0000-0002-3199-6686; Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

8

WoS Q

Q3

Scopus Q

Source

Volume

21

Issue

11

Start Page

End Page

Collections