Surface Characterization and Radical Decay Studies of Oxygen Plasma-Treated Pmma Films

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Polymethylmethacrylate (PMMA) films were modified by RF oxygen plasma with various powers applied for different periods, and the effects of these parameters on the surface properties such as hydrophilicity, surface free energy (SFE), chemistry, and topography were investigated by water contact angle, goniometer, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy, and the types of the created free radicals and their decay were detected by electron spin resonance spectroscopy (ESR). SFE and contact angle results varied depending on the plasma parameters. Oxygen plasma treatment (100 W-30 min) enhanced the hydrophilicity of PMMA surface as shown by decreasing the water contact angle from 70 degrees to 26 degrees. XPS analysis showed the change in the amounts of the present functionalities as well as formation of new groups as free carbonyl and carbonate groups. The roughness of the surface increased considerably from similar to 2 nm to similar to 75 nm after 100 W-30 min oxygen plasma treatment. ESR analysis indicated the introduction of peroxy radicals by oxygen plasma treatment, and the intensity of the radicals increased with increasing the applied power. Significant decrease in radical concentration was observed especially for the samples treated with higher powers when the samples were kept under the atmospheric conditions. As a conclusion, RF plasma, causes changes in the chemical and physical properties of the materials depending on the applied parameters, and can be used for the creation of specific groups or radicals to link or immobilize active molecules onto the surface of a material. Copyright (C) 2012 John Wiley & Sons, Ltd.

Description

Hasirci, Nesrin/0000-0002-4497-0194; Aksoy, Eda Ayse/0000-0003-4977-0412

Keywords

PMMA, oxygen plasma treatment, contact angle, SFE, XPS, ESR

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q4

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
36

Source

Surface and Interface Analysis

Volume

45

Issue

4

Start Page

844

End Page

853

Collections

PlumX Metrics
Citations

CrossRef : 39

Scopus : 44

Captures

Mendeley Readers : 38

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.29882305

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo