Stability Criteria for Linear Periodic Impulsive Hamiltonian Systems

dc.contributor.author Guseinov, G. Sh.
dc.contributor.author Zafer, A.
dc.date.accessioned 2024-07-05T14:33:13Z
dc.date.available 2024-07-05T14:33:13Z
dc.date.issued 2007
dc.description Zafer, Agacik/0000-0001-8446-1223 en_US
dc.description.abstract In this paper we obtain stability criteria for linear periodic impulsive Hamiltonian systems. A Lyapunov type inequality is established. Our results improve also the ones previously obtained for systems without impulse effect. (c) 2007 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.jmaa.2007.01.095
dc.identifier.issn 0022-247X
dc.identifier.scopus 2-s2.0-34447323107
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2007.01.095
dc.identifier.uri https://hdl.handle.net/20.500.14411/904
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.ispartof Journal of Mathematical Analysis and Applications
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject stability en_US
dc.subject Hamiltonian en_US
dc.subject linear en_US
dc.subject impulse en_US
dc.subject periodic system en_US
dc.title Stability Criteria for Linear Periodic Impulsive Hamiltonian Systems en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Zafer, Agacik/0000-0001-8446-1223
gdc.author.scopusid 25026129500
gdc.author.scopusid 56550216700
gdc.author.wosid Zafer, Agacik/A-1011-2009
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey; Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 1206 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1195 en_US
gdc.description.volume 335 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2092973658
gdc.identifier.wos WOS:000248854000033
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 7.2680457E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Periodic system
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Impulse
gdc.oaire.keywords Linear
gdc.oaire.keywords Stability
gdc.oaire.keywords Analysis
gdc.oaire.keywords Hamiltonian
gdc.oaire.keywords periodic system
gdc.oaire.keywords Linear ordinary differential equations and systems
gdc.oaire.keywords Stability of solutions to ordinary differential equations
gdc.oaire.keywords Ordinary differential equations with impulses
gdc.oaire.keywords impulse
gdc.oaire.keywords Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
gdc.oaire.popularity 3.9715915E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 4.23767362
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 36
gdc.plumx.crossrefcites 32
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 43
gdc.scopus.citedcount 43
gdc.virtual.author Hüseyin, Hüseyin Şirin
gdc.wos.citedcount 43
relation.isAuthorOfPublication f8b33fd5-3950-431e-a264-4375c09aa84e
relation.isAuthorOfPublication.latestForDiscovery f8b33fd5-3950-431e-a264-4375c09aa84e
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections