Advancing Mmwave Altimetry for Unmanned Aerial Systems: a Signal Processing Framework for Optimized Waveform Design

dc.authoridKara, Ali/0000-0002-9739-7619
dc.authorscopusid58781762100
dc.authorscopusid51763497600
dc.authorscopusid7102824862
dc.authorscopusid35408917600
dc.authorwosidAwan, Maaz/LEL-9790-2024
dc.authorwosidKara, Ali/R-8038-2019
dc.contributor.authorAwan, Maaz Ali
dc.contributor.authorDalveren, Yaser
dc.contributor.authorKara, Ali
dc.contributor.authorDerawi, Mohammad
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-11-05T20:18:59Z
dc.date.available2024-11-05T20:18:59Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Awan, Maaz Ali] Atilim Univ, Grad Sch Nat & Appl Sci, Dept Elect & Elect Engn, TR-06830 Ankara, Turkiye; [Dalveren, Yaser] Izmir Bakircay Univ, Dept Elect & Elect Engn, TR-35665 Izmir, Turkiye; [Kara, Ali] Gazi Univ, Dept Elect & Elect Engn, TR-06570 Ankara, Turkiye; [Derawi, Mohammad] Norwegian Univ Sci & Technol, Dept Elect Syst, N-2815 Gjovik, Norwayen_US
dc.descriptionKara, Ali/0000-0002-9739-7619en_US
dc.description.abstractThis research advances millimeter-wave (mmWave) altimetry for unmanned aerial systems (UASs) by optimizing performance metrics within the constraints of inexpensive automotive radars. Leveraging the software-defined architecture, this study encompasses the intricacies of frequency modulated continuous waveform (FMCW) design for three distinct stages of UAS flight: cruise, landing approach, and touchdown within a signal processing framework. Angle of arrival (AoA) estimation, traditionally employed in terrain mapping applications, is largely unexplored for UAS radar altimeters (RAs). Time-division multiplexing multiple input-multiple output (TDM-MIMO) is an efficient method for enhancing angular resolution without compromising the size, weight, and power (SWaP) characteristics. Accordingly, this work argues the potential of AoA estimation using TDM-MIMO to augment situational awareness in challenging landing scenarios. To this end, two corner cases comprising landing a small-sized drone on a platform in the middle of a water body are included. Likewise, for the touchdown stage, an improvised rendition of zoom fast Fourier transform (ZFFT) is investigated to achieve millimeter (mm)-level range accuracy. Aptly, it is proposed that a mm-level accurate RA may be exploited as a software redundancy for the critical weight-on-wheels (WoW) system in fixed-wing commercial UASs. Each stage is simulated as a radar scenario using the specifications of automotive radar operating in the 77-81 GHz band to optimize waveform design, setting the stage for field verification. This article addresses challenges arising from radial velocity due to UAS descent rates and terrain variation through theoretical and mathematical approaches for characterization and mandatory compensation. While constant false alarm rate (CFAR) algorithms have been reported for ground detection, a comparison of their variants within the scope UAS altimetry is limited. This study appraises popular CFAR variants to achieve optimized ground detection performance. The authors advocate for dedicated minimum operational performance standards (MOPS) for UAS RAs. Lastly, this body of work identifies potential challenges, proposes solutions, and outlines future research directions.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/drones8090440
dc.identifier.issn2504-446X
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85205041400
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/drones8090440
dc.identifier.urihttps://hdl.handle.net/20.500.14411/10252
dc.identifier.volume8en_US
dc.identifier.wosWOS:001323874200001
dc.identifier.wosqualityQ2
dc.institutionauthorDalveren, Yaser
dc.institutionauthorKara, Ali
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectmmWaveen_US
dc.subjectTDM-MIMOen_US
dc.subjectaltimetryen_US
dc.subjectUASen_US
dc.subjectFMCWen_US
dc.subjectCFARen_US
dc.subjectZFFTen_US
dc.subjectWoWen_US
dc.titleAdvancing Mmwave Altimetry for Unmanned Aerial Systems: a Signal Processing Framework for Optimized Waveform Designen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections