Discussion of Coupled and Tripled Coincidence Point Theorems for Φ-Contractive Mappings Without the Mixed <i>g</I>-monotone Property

dc.authorid Roldán López de Hierro, Antonio Francisco/0000-0002-6956-4328
dc.authorid KARAPINAR, ERDAL/0000-0002-6798-3254
dc.authorid Sintunavarat, Wutiphol/0000-0002-0932-1332
dc.authorscopusid 16678995500
dc.authorscopusid 56874899500
dc.authorscopusid 7004122694
dc.authorscopusid 30567861500
dc.authorwosid Sintunavarat, Wutiphol/AHE-9235-2022
dc.authorwosid Roldán López de Hierro, Antonio Francisco/N-7880-2013
dc.authorwosid Shahzad, Naseer/H-9433-2012
dc.authorwosid KARAPINAR, ERDAL/H-3177-2011
dc.contributor.author Karapinar, Erdal
dc.contributor.author Roldan, Antonio
dc.contributor.author Shahzad, Naseer
dc.contributor.author Sintunavarat, Wutiphol
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T14:27:34Z
dc.date.available 2024-07-05T14:27:34Z
dc.date.issued 2014
dc.department Atılım University en_US
dc.department-temp [Karapinar, Erdal] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Karapinar, Erdal] King Abdulaziz Univ, Nonlinear Anal & Appl Math Res Grp NAAM, Jeddah 21589, Saudi Arabia; [Roldan, Antonio] Univ Jaen, Dept Math, Jaen 23071, Spain; [Shahzad, Naseer] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia; [Sintunavarat, Wutiphol] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Rangsit Ctr, Pathum Thani 12121, Thailand en_US
dc.description Roldán López de Hierro, Antonio Francisco/0000-0002-6956-4328; KARAPINAR, ERDAL/0000-0002-6798-3254; Sintunavarat, Wutiphol/0000-0002-0932-1332 en_US
dc.description.abstract After the appearance of Ran and Reuring's theorem and Nieto and Rodriguez-Lopez's theorem, the field of fixed point theory applied to partially ordered metric spaces has attracted much attention. Coupled, tripled, quadrupled and multidimensional fixed point results has been presented in recent times. One of the most important hypotheses of these theorems was the mixed monotone property. The notion of invariant set was introduced in order to avoid the condition of mixed monotone property, and many statements have been proved using these hypotheses. In this paper we show that the invariant condition, together with transitivity, lets us to prove in many occasions similar theorems to which were introduced using the mixed monotone property. en_US
dc.description.sponsorship Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah; DSR; Junta de Andalucia of the Andalusian CICYE [FQM-268] en_US
dc.description.sponsorship This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The third author, therefore, acknowledges with gratitude DSR for financial support. The second author has been partially supported by Junta de Andalucia by Project FQM-268 of the Andalusian CICYE. en_US
dc.identifier.citationcount 27
dc.identifier.doi 10.1186/1687-1812-2014-92
dc.identifier.issn 1687-1812
dc.identifier.scopus 2-s2.0-84899809183
dc.identifier.uri https://doi.org/10.1186/1687-1812-2014-92
dc.identifier.uri https://hdl.handle.net/20.500.14411/255
dc.identifier.wos WOS:000338233700002
dc.institutionauthor Karapınar, Erdal
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 33
dc.subject partially ordered set en_US
dc.subject fixed point en_US
dc.subject contractive mapping en_US
dc.subject mixed monotone property en_US
dc.subject F-invariant set en_US
dc.title Discussion of Coupled and Tripled Coincidence Point Theorems for Φ-Contractive Mappings Without the Mixed <i>g</I>-monotone Property en_US
dc.type Article en_US
dc.wos.citedbyCount 29
dspace.entity.type Publication
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections