Co-Fais: Cooperative Fuzzy Artificial Immune System for Detecting Intrusion in Wireless Sensor Networks

dc.authorid S. Band, Shahab/0000-0001-6109-1311
dc.authorid Anuar, Nor Badrul/0000-0003-4380-5303
dc.authorid Misra, Sanjay/0000-0002-3556-9331
dc.authorid S.Band, Shahab/0000-0002-8963-731X
dc.authorid Mat Kiah, Miss Laiha/0000-0002-1240-5406
dc.authorid Rohani, Vala Ali/0000-0002-5629-8251
dc.authorscopusid 57221738247
dc.authorscopusid 22733749500
dc.authorscopusid 24833455600
dc.authorscopusid 50162236300
dc.authorscopusid 37461848600
dc.authorscopusid 56962766700
dc.authorscopusid 56962766700
dc.authorwosid S.Band, Shahab/AAD-3311-2021
dc.authorwosid S. Band, Shahab/ABB-2469-2020
dc.authorwosid Anuar, Nor Badrul/B-3101-2010
dc.authorwosid Misra, Sanjay/K-2203-2014
dc.authorwosid S.Band, Shahab/ABI-7388-2020
dc.authorwosid Mat Kiah, Miss Laiha/B-2767-2010
dc.contributor.author Shamshirband, Shahaboddin
dc.contributor.author Anuar, Nor Badrul
dc.contributor.author Kiah, Miss Laiha Mat
dc.contributor.author Rohani, Vala Ali
dc.contributor.author Petkovic, Dalibor
dc.contributor.author Misra, Sanjay
dc.contributor.author Khan, Abdul Nasir
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T14:26:56Z
dc.date.available 2024-07-05T14:26:56Z
dc.date.issued 2014
dc.department Atılım University en_US
dc.department-temp [Shamshirband, Shahaboddin; Anuar, Nor Badrul; Kiah, Miss Laiha Mat; Rohani, Vala Ali; Khan, Abdul Nasir] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia; [Petkovic, Dalibor] Univ Nis, Fac Mech Engn, Dept Mechatron, Nish 18000, Serbia; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; [Shamshirband, Shahaboddin] Islamic Azad Univ, Chalous Branch, Dept Comp Sci, Chalous 46615397, Mazandaran, Iran en_US
dc.description S. Band, Shahab/0000-0001-6109-1311; Anuar, Nor Badrul/0000-0003-4380-5303; Misra, Sanjay/0000-0002-3556-9331; S.Band, Shahab/0000-0002-8963-731X; Mat Kiah, Miss Laiha/0000-0002-1240-5406; Rohani, Vala Ali/0000-0002-5629-8251 en_US
dc.description.abstract Due to the distributed nature of Denial-of-Service attacks, it is tremendously challenging to identify such malicious behavior using traditional intrusion detection systems in Wireless Sensor Networks (WSNs). In the current paper, a bio-inspired method is introduced, namely the cooperative-based fuzzy artificial immune system (Co-FATS). It is a modular-based defense strategy derived from the danger theory of the human immune system. The agents synchronize and work with one another to calculate the abnormality of sensor behavior in terms of context antigen value (CAV) or attackers and update the fuzzy activation threshold for security response. In such a multi-node circumstance, the sniffer module adapts to the sink node to audit data by analyzing the packet components and sending the log file to the next layer. The fuzzy misuse detector module (FMDM) integrates with a danger detector module to identify the sources of danger signals. The infected sources are transmitted to the fuzzy Q-learning vaccination modules (FQVM) in order for particular, required action to enhance system abilities. The Cooperative Decision Making Modules (Co-DMM) incorporates danger detector module with the fuzzy Q-learning vaccination module to produce optimum defense strategies. To evaluate the performance of the proposed model, the Low Energy Adaptive Clustering Hierarchy (LEACH) was simulated using a network simulator. The model was subsequently compared against other existing soft computing methods, such as fuzzy logic controller (FLC), artificial immune system (AIS), and fuzzy Q-learning (FQL), in terms of detection accuracy, counter-defense, network lifetime and energy consumption, to demonstrate its efficiency and viability. The proposed method improves detection accuracy and successful defense rate performance against attacks compared to conventional empirical methods. (C) 2014 Elsevier Ltd. All rights reserved. en_US
dc.description.sponsorship Malaysian Ministry of Education under the University of Malaya High Impact Research [UM.C/625/1/HIR/MoE/FCSIT/12, UM.C/625/1/HIR/MOHE/SC/13/3] en_US
dc.description.sponsorship This paper is financially supported by the Malaysian Ministry of Education under the University of Malaya High Impact Research Grants UM.C/625/1/HIR/MoE/FCSIT/12 and UM.C/625/1/HIR/MOHE/SC/13/3. en_US
dc.identifier.citationcount 79
dc.identifier.doi 10.1016/j.jnca.2014.03.012
dc.identifier.endpage 117 en_US
dc.identifier.issn 1084-8045
dc.identifier.scopus 2-s2.0-84900453631
dc.identifier.scopusquality Q1
dc.identifier.startpage 102 en_US
dc.identifier.uri https://doi.org/10.1016/j.jnca.2014.03.012
dc.identifier.uri https://hdl.handle.net/20.500.14411/202
dc.identifier.volume 42 en_US
dc.identifier.wos WOS:000337996800010
dc.identifier.wosquality Q1
dc.institutionauthor Mısra, Sanjay
dc.language.iso en en_US
dc.publisher Academic Press Ltd- Elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 93
dc.subject Artificial immune system en_US
dc.subject Cooperative en_US
dc.subject Fuzzy system en_US
dc.subject Intrusion detection and prevention systems en_US
dc.subject Security en_US
dc.title Co-Fais: Cooperative Fuzzy Artificial Immune System for Detecting Intrusion in Wireless Sensor Networks en_US
dc.type Article en_US
dc.wos.citedbyCount 74
dspace.entity.type Publication
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections