Co-Fais: Cooperative Fuzzy Artificial Immune System for Detecting Intrusion in Wireless Sensor Networks
dc.authorid | S. Band, Shahab/0000-0001-6109-1311 | |
dc.authorid | Anuar, Nor Badrul/0000-0003-4380-5303 | |
dc.authorid | Misra, Sanjay/0000-0002-3556-9331 | |
dc.authorid | S.Band, Shahab/0000-0002-8963-731X | |
dc.authorid | Mat Kiah, Miss Laiha/0000-0002-1240-5406 | |
dc.authorid | Rohani, Vala Ali/0000-0002-5629-8251 | |
dc.authorscopusid | 57221738247 | |
dc.authorscopusid | 22733749500 | |
dc.authorscopusid | 24833455600 | |
dc.authorscopusid | 50162236300 | |
dc.authorscopusid | 37461848600 | |
dc.authorscopusid | 56962766700 | |
dc.authorscopusid | 56962766700 | |
dc.authorwosid | S.Band, Shahab/AAD-3311-2021 | |
dc.authorwosid | S. Band, Shahab/ABB-2469-2020 | |
dc.authorwosid | Anuar, Nor Badrul/B-3101-2010 | |
dc.authorwosid | Misra, Sanjay/K-2203-2014 | |
dc.authorwosid | S.Band, Shahab/ABI-7388-2020 | |
dc.authorwosid | Mat Kiah, Miss Laiha/B-2767-2010 | |
dc.contributor.author | Shamshirband, Shahaboddin | |
dc.contributor.author | Anuar, Nor Badrul | |
dc.contributor.author | Kiah, Miss Laiha Mat | |
dc.contributor.author | Rohani, Vala Ali | |
dc.contributor.author | Petkovic, Dalibor | |
dc.contributor.author | Misra, Sanjay | |
dc.contributor.author | Khan, Abdul Nasir | |
dc.contributor.other | Computer Engineering | |
dc.date.accessioned | 2024-07-05T14:26:56Z | |
dc.date.available | 2024-07-05T14:26:56Z | |
dc.date.issued | 2014 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Shamshirband, Shahaboddin; Anuar, Nor Badrul; Kiah, Miss Laiha Mat; Rohani, Vala Ali; Khan, Abdul Nasir] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia; [Petkovic, Dalibor] Univ Nis, Fac Mech Engn, Dept Mechatron, Nish 18000, Serbia; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; [Shamshirband, Shahaboddin] Islamic Azad Univ, Chalous Branch, Dept Comp Sci, Chalous 46615397, Mazandaran, Iran | en_US |
dc.description | S. Band, Shahab/0000-0001-6109-1311; Anuar, Nor Badrul/0000-0003-4380-5303; Misra, Sanjay/0000-0002-3556-9331; S.Band, Shahab/0000-0002-8963-731X; Mat Kiah, Miss Laiha/0000-0002-1240-5406; Rohani, Vala Ali/0000-0002-5629-8251 | en_US |
dc.description.abstract | Due to the distributed nature of Denial-of-Service attacks, it is tremendously challenging to identify such malicious behavior using traditional intrusion detection systems in Wireless Sensor Networks (WSNs). In the current paper, a bio-inspired method is introduced, namely the cooperative-based fuzzy artificial immune system (Co-FATS). It is a modular-based defense strategy derived from the danger theory of the human immune system. The agents synchronize and work with one another to calculate the abnormality of sensor behavior in terms of context antigen value (CAV) or attackers and update the fuzzy activation threshold for security response. In such a multi-node circumstance, the sniffer module adapts to the sink node to audit data by analyzing the packet components and sending the log file to the next layer. The fuzzy misuse detector module (FMDM) integrates with a danger detector module to identify the sources of danger signals. The infected sources are transmitted to the fuzzy Q-learning vaccination modules (FQVM) in order for particular, required action to enhance system abilities. The Cooperative Decision Making Modules (Co-DMM) incorporates danger detector module with the fuzzy Q-learning vaccination module to produce optimum defense strategies. To evaluate the performance of the proposed model, the Low Energy Adaptive Clustering Hierarchy (LEACH) was simulated using a network simulator. The model was subsequently compared against other existing soft computing methods, such as fuzzy logic controller (FLC), artificial immune system (AIS), and fuzzy Q-learning (FQL), in terms of detection accuracy, counter-defense, network lifetime and energy consumption, to demonstrate its efficiency and viability. The proposed method improves detection accuracy and successful defense rate performance against attacks compared to conventional empirical methods. (C) 2014 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | Malaysian Ministry of Education under the University of Malaya High Impact Research [UM.C/625/1/HIR/MoE/FCSIT/12, UM.C/625/1/HIR/MOHE/SC/13/3] | en_US |
dc.description.sponsorship | This paper is financially supported by the Malaysian Ministry of Education under the University of Malaya High Impact Research Grants UM.C/625/1/HIR/MoE/FCSIT/12 and UM.C/625/1/HIR/MOHE/SC/13/3. | en_US |
dc.identifier.citationcount | 79 | |
dc.identifier.doi | 10.1016/j.jnca.2014.03.012 | |
dc.identifier.endpage | 117 | en_US |
dc.identifier.issn | 1084-8045 | |
dc.identifier.scopus | 2-s2.0-84900453631 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 102 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jnca.2014.03.012 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/202 | |
dc.identifier.volume | 42 | en_US |
dc.identifier.wos | WOS:000337996800010 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Mısra, Sanjay | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Ltd- Elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 93 | |
dc.subject | Artificial immune system | en_US |
dc.subject | Cooperative | en_US |
dc.subject | Fuzzy system | en_US |
dc.subject | Intrusion detection and prevention systems | en_US |
dc.subject | Security | en_US |
dc.title | Co-Fais: Cooperative Fuzzy Artificial Immune System for Detecting Intrusion in Wireless Sensor Networks | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 74 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isAuthorOfPublication.latestForDiscovery | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |