Pem Fuel Cell Short Stack Performances of Silica Doped Nanocomposite Membranes

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

In this study, an air-cooled Proton Exchange Membrane Fuel Cell (PEMFC) short stack with Nafion/Silica nanocomposite membrane was designed and fabricated for net 100 W net power output to improve the stack performance at low relative humidity conditions. Composite membrane was prepared by solution casting method. Gas Diffusion Electrodes (GDE's) were produced by ultrasonic spray coating technique. Short stack design was based on electrochemical data obtained at 0.60 V was 0.45 A/cm(2) from performance tests of a single cell having the same membrane electrode assemblies (MEA) that had an active area of 100 cm(2). The short stack was tested in the constant resistance load regime, in dead-end rode, with controlling temperature by air on-off control system. A maximum power of 117 W was obtained from the short stack. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702

Keywords

Proton exchange membrane, PEM fuel cell, Stack, Fuel cell system, Nanocomposite membrane

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

Volume

40

Issue

24

Start Page

7870

End Page

7878

Collections

SCOPUS™ Citations

22

checked on Oct 26, 2025

Web of Science™ Citations

15

checked on Oct 26, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo