Fesenko Reciprocity Map
Loading...

Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Mathematical Soc
Open Access Color
BRONZE
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In recent papers, Fesenko has defined the non-Abelian local reciprocity map for every totally ramified arithmetically profinite (APF) Galois extension of a given local field K, by extending the work of Hazewinkel and Neukirch-Iwasawa. The theory of Fesenko extends the previous non-Abelian generalizations of local class field theory given by Koch-de Shalit, and by A. Gurevich. In this paper, which is research-expository in nature, we give a detailed account of Fesenko's work, including all the skipped proofs.
Description
Ikeda, Kazim Ilhan/0000-0001-6349-3541
ORCID
Keywords
Local fields, higher-ramification theory, APF extensions, Fontaine-Wintenberger field of norms, Fesenko reciprocity map, non-Abelian local class field theory, p-adic local Langlands correspondence, APF extensions, higher-ramification theory, Mathematics - Number Theory, Fesenko reciprocity map, 11S37, Fontaine-Wintenberger field of norms, p-adic local Langlands correspondence, Local fields, non-Abelian local class field theory, Class field theory; \(p\)-adic formal groups, Galois theory, \(p\)-adic local Langlands correspondence, non-abelian local class field theory, local fields
Fields of Science
0101 mathematics, 01 natural sciences
Citation
WoS Q
Q3
Scopus Q
Q4

OpenCitations Citation Count
1
Source
St. Petersburg Mathematical Journal
Volume
20
Issue
3
Start Page
407
End Page
445
PlumX Metrics
Citations
Scopus : 1
Captures
Mendeley Readers : 2
SCOPUS™ Citations
1
checked on Feb 11, 2026
Web of Science™ Citations
1
checked on Feb 11, 2026
Page Views
3
checked on Feb 11, 2026
Google Scholar™


