MO-ISCSO: A Challenging Benchmark Test Suite for Large-Scale Multi-Objective Structural Optimization

dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.author Azad, Sina Kazemzadeh
dc.contributor.other Department of Civil Engineering
dc.date.accessioned 2025-08-05T17:16:11Z
dc.date.available 2025-08-05T17:16:11Z
dc.date.issued 2025
dc.description.abstract Current studies on the development of multi-objective algorithms for optimization of truss structures mainly depend on small-scale classic benchmark instances. This paper highlights the importance of establishing standard large-scale multi-objective structural optimization benchmarking suites for accurate validation of the proposed algorithms. A new benchmark test suite, called MO-ISCSO, is proposed for large-scale multi-objective structural optimization, based on the most recent optimization problems of the international student competition in structural optimization (ISCSO). Owing to the very small feasibility ratios of the MO-ISCSO instances, the effect of presence of feasible designs in the initial population of NSGA-II, GDE3, and AR-MOEA multi-objective optimization algorithms is investigated using the proposed test suite. The obtained numerical results indicate that seeding the initial population with feasible solutions helps the foregoing algorithms maintain a better balance between convergence and diversity. The statistical results form a baseline for future studies on developing efficient multi-objective structural optimization techniques. en_US
dc.identifier.doi 10.1016/j.istruc.2025.109674
dc.identifier.issn 2352-0124
dc.identifier.scopus 2-s2.0-105010327696
dc.identifier.uri https://doi.org/10.1016/j.istruc.2025.109674
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.ispartof Structures en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Evolutionary Multi-Objective Optimization en_US
dc.subject Structural Optimization en_US
dc.subject Initialization en_US
dc.subject Benchmarking en_US
dc.subject High-Dimensional Optimization en_US
dc.subject Evolutionary Computation en_US
dc.title MO-ISCSO: A Challenging Benchmark Test Suite for Large-Scale Multi-Objective Structural Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Azad, Saeıd Kazemzadeh
gdc.author.scopusid 57193753354
gdc.author.scopusid 57191406660
gdc.author.wosid Kazemzadeh Azad, Sina/O-6572-2016
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Azad, Saeid Kazemzadeh] Atilim Univ, Dept Civil Engn, Ankara, Turkiye; [Azad, Sina Kazemzadeh] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 79 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.wos WOS:001539421200001
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery 238c4130-e9ea-4b1c-9dea-772c4a0dad39

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MO-ISCSO Paper.pdf
Size:
6.75 MB
Format:
Adobe Portable Document Format

Collections