MO-ISCSO: A Challenging Benchmark Test Suite for Large-Scale Multi-Objective Structural Optimization

dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.author Azad, Sina Kazemzadeh
dc.date.accessioned 2025-08-05T17:16:11Z
dc.date.available 2025-08-05T17:16:11Z
dc.date.issued 2025
dc.description.abstract Current studies on the development of multi-objective algorithms for optimization of truss structures mainly depend on small-scale classic benchmark instances. This paper highlights the importance of establishing standard large-scale multi-objective structural optimization benchmarking suites for accurate validation of the proposed algorithms. A new benchmark test suite, called MO-ISCSO, is proposed for large-scale multi-objective structural optimization, based on the most recent optimization problems of the international student competition in structural optimization (ISCSO). Owing to the very small feasibility ratios of the MO-ISCSO instances, the effect of presence of feasible designs in the initial population of NSGA-II, GDE3, and AR-MOEA multi-objective optimization algorithms is investigated using the proposed test suite. The obtained numerical results indicate that seeding the initial population with feasible solutions helps the foregoing algorithms maintain a better balance between convergence and diversity. The statistical results form a baseline for future studies on developing efficient multi-objective structural optimization techniques. en_US
dc.identifier.doi 10.1016/j.istruc.2025.109674
dc.identifier.issn 2352-0124
dc.identifier.scopus 2-s2.0-105010327696
dc.identifier.uri https://doi.org/10.1016/j.istruc.2025.109674
dc.identifier.uri https://hdl.handle.net/20.500.14411/10744
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.ispartof Structures en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Evolutionary Multi-Objective Optimization en_US
dc.subject Structural Optimization en_US
dc.subject Initialization en_US
dc.subject Benchmarking en_US
dc.subject High-Dimensional Optimization en_US
dc.subject Evolutionary Computation en_US
dc.title MO-ISCSO: A Challenging Benchmark Test Suite for Large-Scale Multi-Objective Structural Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57193753354
gdc.author.scopusid 57191406660
gdc.author.wosid Kazemzadeh Azad, Sina/O-6572-2016
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Azad, Saeid Kazemzadeh] Atilim Univ, Dept Civil Engn, Ankara, Turkiye; [Azad, Sina Kazemzadeh] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 109674
gdc.description.volume 79 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4412435657
gdc.identifier.wos WOS:001539421200001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 5.01839543
gdc.openalex.normalizedpercentile 0.89
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 1
gdc.virtual.author Azad, Saeıd Kazemzadeh
gdc.wos.citedcount 0
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 238c4130-e9ea-4b1c-9dea-772c4a0dad39

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MO-ISCSO Paper.pdf
Size:
6.75 MB
Format:
Adobe Portable Document Format

Collections