TobSet: A New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robots

dc.authoridAlam, Muhammad Shahab/0000-0002-5653-2503
dc.authoridGunes, Ahmet/0000-0003-1663-0368
dc.authoridKhan, Muhammad/0000-0002-9195-3477
dc.authoridTufail, Muhammad/0000-0002-0287-3900
dc.authorid, bashir/0000-0001-5254-7698
dc.authoridsaleem, waqas/0000-0003-3991-0127
dc.authoridAlam, Mansoor/0000-0003-1732-205X
dc.authorscopusid57189388538
dc.authorscopusid57208291019
dc.authorscopusid57198172314
dc.authorscopusid57209876827
dc.authorscopusid57198263797
dc.authorscopusid52664298700
dc.authorscopusid24725537700
dc.authorwosidAlam, Muhammad Shahab/CAF-0412-2022
dc.authorwosidGunes, Ahmet/AAC-1808-2022
dc.authorwosidKhan, Muhammad/N-5478-2016
dc.authorwosidGunes, Ahmet/E-5481-2013
dc.contributor.authorAlam, Muhammad Shahab
dc.contributor.authorAlam, Mansoor
dc.contributor.authorTufail, Muhammad
dc.contributor.authorKhan, Muhammad Umer
dc.contributor.authorGunes, Ahmet
dc.contributor.authorSalah, Bashir
dc.contributor.authorKhan, Muhammad Tahir
dc.contributor.otherMechatronics Engineering
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T15:18:04Z
dc.date.available2024-07-05T15:18:04Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Alam, Muhammad Shahab; Gunes, Ahmet] Gebze Tech Univ, Def Technol Inst, TR-41400 Gebze, Turkey; [Alam, Mansoor; Tufail, Muhammad; Nasir, Fazal E.; Khan, Muhammad Tahir] Natl Ctr Robot & Automat NCRA, Adv Robot & Automat Lab, Peshawar 25000, Pakistan; [Tufail, Muhammad; Khan, Muhammad Tahir] Univ Engn & Technol, Dept Mech Engn, Peshawar 25000, Pakistan; [Khan, Muhammad Umer] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkey; [Salah, Bashir] King Saud Univ, Coll Engn, Dept Ind Engn, Riyadh 11421, Saudi Arabia; [Saleem, Waqas] Inst Technol, Dept Mech & Mfg Engn, Sligo F91 YW50, Irelanden_US
dc.descriptionAlam, Muhammad Shahab/0000-0002-5653-2503; Gunes, Ahmet/0000-0003-1663-0368; Khan, Muhammad/0000-0002-9195-3477; Tufail, Muhammad/0000-0002-0287-3900; , bashir/0000-0001-5254-7698; saleem, waqas/0000-0003-3991-0127; Alam, Mansoor/0000-0003-1732-205Xen_US
dc.description.abstractSelective agrochemical spraying is a highly intricate task in precision agriculture. It requires spraying equipment to distinguish between crop (plants) and weeds and perform spray operations in real-time accordingly. The study presented in this paper entails the development of two convolutional neural networks (CNNs)-based vision frameworks, i.e., Faster R-CNN and YOLOv5, for the detection and classification of tobacco crops/weeds in real time. An essential requirement for CNN is to pre-train it well on a large dataset to distinguish crops from weeds, lately the same trained network can be utilized in real fields. We present an open access image dataset (TobSet) of tobacco plants and weeds acquired from local fields at different growth stages and varying lighting conditions. The TobSet comprises 7000 images of tobacco plants and 1000 images of weeds and bare soil, taken manually with digital cameras periodically over two months. Both vision frameworks are trained and then tested using this dataset. The Faster R-CNN-based vision framework manifested supremacy over the YOLOv5-based vision framework in terms of accuracy and robustness, whereas the YOLOv5-based vision framework demonstrated faster inference. Experimental evaluation of the system is performed in tobacco fields via a four-wheeled mobile robot sprayer controlled using a computer equipped with NVIDIA GTX 1650 GPU. The results demonstrate that Faster R-CNN and YOLOv5-based vision systems can analyze plants at 10 and 16 frames per second (fps) with a classification accuracy of 98% and 94%, respectively. Moreover, the precise smart application of pesticides with the proposed system offered a 52% reduction in pesticide usage by spotting the targets only, i.e., tobacco plants.en_US
dc.description.sponsorshipKing Saud University, Saudi Arabia [RSP-2021/145]en_US
dc.description.sponsorshipThis study received funding from King Saud University, Saudi Arabia, through researchers supporting project number (RSP-2021/145). The APCs were funded by King Saud University, Saudi Arabia, through researchers supporting project number (RSP-2021/145).en_US
dc.identifier.citation10
dc.identifier.doi10.3390/app12031308
dc.identifier.issn2076-3417
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85123410420
dc.identifier.urihttps://doi.org/10.3390/app12031308
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1827
dc.identifier.volume12en_US
dc.identifier.wosWOS:000756044700001
dc.identifier.wosqualityQ2
dc.institutionauthorKhan, Muhammad Umer
dc.institutionauthorGüneş, Ahmet
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectprecision agricultureen_US
dc.subjectselective sprayingen_US
dc.subjectvision-based crop and weed detectionen_US
dc.subjectconvolutional neural networksen_US
dc.subjectFaster R-CNNen_US
dc.subjectYOLOv5en_US
dc.titleTobSet: A New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robotsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscoverye2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublicationcfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscoverycfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections