Tobset: a New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robots

dc.contributor.author Alam, Muhammad Shahab
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Alam, Mansoor
dc.contributor.author Tufail, Muhammad
dc.contributor.author Güneş, Ahmet
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Gunes, Ahmet
dc.contributor.author Salah, Bashir
dc.contributor.author Khan, Muhammad Tahir
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Güneş, Ahmet
dc.contributor.other Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:18:04Z
dc.date.available 2024-07-05T15:18:04Z
dc.date.issued 2022
dc.description Alam, Muhammad Shahab/0000-0002-5653-2503; Gunes, Ahmet/0000-0003-1663-0368; Khan, Muhammad/0000-0002-9195-3477; Tufail, Muhammad/0000-0002-0287-3900; , bashir/0000-0001-5254-7698; saleem, waqas/0000-0003-3991-0127; Alam, Mansoor/0000-0003-1732-205X en_US
dc.description.abstract Selective agrochemical spraying is a highly intricate task in precision agriculture. It requires spraying equipment to distinguish between crop (plants) and weeds and perform spray operations in real-time accordingly. The study presented in this paper entails the development of two convolutional neural networks (CNNs)-based vision frameworks, i.e., Faster R-CNN and YOLOv5, for the detection and classification of tobacco crops/weeds in real time. An essential requirement for CNN is to pre-train it well on a large dataset to distinguish crops from weeds, lately the same trained network can be utilized in real fields. We present an open access image dataset (TobSet) of tobacco plants and weeds acquired from local fields at different growth stages and varying lighting conditions. The TobSet comprises 7000 images of tobacco plants and 1000 images of weeds and bare soil, taken manually with digital cameras periodically over two months. Both vision frameworks are trained and then tested using this dataset. The Faster R-CNN-based vision framework manifested supremacy over the YOLOv5-based vision framework in terms of accuracy and robustness, whereas the YOLOv5-based vision framework demonstrated faster inference. Experimental evaluation of the system is performed in tobacco fields via a four-wheeled mobile robot sprayer controlled using a computer equipped with NVIDIA GTX 1650 GPU. The results demonstrate that Faster R-CNN and YOLOv5-based vision systems can analyze plants at 10 and 16 frames per second (fps) with a classification accuracy of 98% and 94%, respectively. Moreover, the precise smart application of pesticides with the proposed system offered a 52% reduction in pesticide usage by spotting the targets only, i.e., tobacco plants. en_US
dc.description.sponsorship King Saud University, Saudi Arabia [RSP-2021/145] en_US
dc.description.sponsorship This study received funding from King Saud University, Saudi Arabia, through researchers supporting project number (RSP-2021/145). The APCs were funded by King Saud University, Saudi Arabia, through researchers supporting project number (RSP-2021/145). en_US
dc.identifier.doi 10.3390/app12031308
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85123410420
dc.identifier.uri https://doi.org/10.3390/app12031308
dc.identifier.uri https://hdl.handle.net/20.500.14411/1827
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Applied Sciences
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject precision agriculture en_US
dc.subject selective spraying en_US
dc.subject vision-based crop and weed detection en_US
dc.subject convolutional neural networks en_US
dc.subject Faster R-CNN en_US
dc.subject YOLOv5 en_US
dc.title Tobset: a New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robots en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Alam, Muhammad Shahab/0000-0002-5653-2503
gdc.author.id Gunes, Ahmet/0000-0003-1663-0368
gdc.author.id Khan, Muhammad/0000-0002-9195-3477
gdc.author.id Tufail, Muhammad/0000-0002-0287-3900
gdc.author.id , bashir/0000-0001-5254-7698
gdc.author.id saleem, waqas/0000-0003-3991-0127
gdc.author.id Alam, Mansoor/0000-0003-1732-205X
gdc.author.institutional Khan, Muhammad Umer
gdc.author.institutional Güneş, Ahmet
gdc.author.scopusid 57189388538
gdc.author.scopusid 57208291019
gdc.author.scopusid 57198172314
gdc.author.scopusid 57209876827
gdc.author.scopusid 57198263797
gdc.author.scopusid 52664298700
gdc.author.scopusid 24725537700
gdc.author.wosid Alam, Muhammad Shahab/CAF-0412-2022
gdc.author.wosid Gunes, Ahmet/AAC-1808-2022
gdc.author.wosid Khan, Muhammad/N-5478-2016
gdc.author.wosid Gunes, Ahmet/E-5481-2013
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Alam, Muhammad Shahab; Gunes, Ahmet] Gebze Tech Univ, Def Technol Inst, TR-41400 Gebze, Turkey; [Alam, Mansoor; Tufail, Muhammad; Nasir, Fazal E.; Khan, Muhammad Tahir] Natl Ctr Robot & Automat NCRA, Adv Robot & Automat Lab, Peshawar 25000, Pakistan; [Tufail, Muhammad; Khan, Muhammad Tahir] Univ Engn & Technol, Dept Mech Engn, Peshawar 25000, Pakistan; [Khan, Muhammad Umer] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkey; [Salah, Bashir] King Saud Univ, Coll Engn, Dept Ind Engn, Riyadh 11421, Saudi Arabia; [Saleem, Waqas] Inst Technol, Dept Mech & Mfg Engn, Sligo F91 YW50, Ireland en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1308
gdc.description.volume 12 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4210792242
gdc.identifier.wos WOS:000756044700001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 27.0
gdc.oaire.influence 3.811961E-9
gdc.oaire.isgreen false
gdc.oaire.keywords vision-based crop and weed detection
gdc.oaire.keywords Technology
gdc.oaire.keywords precision agriculture
gdc.oaire.keywords Faster R-CNN
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords selective spraying
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Chemistry
gdc.oaire.keywords YOLOv5
gdc.oaire.keywords precision agriculture; selective spraying; vision-based crop and weed detection; convolutional neural networks; Faster R-CNN; YOLOv5
gdc.oaire.keywords convolutional neural networks
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords QD1-999
gdc.oaire.popularity 2.369645E-8
gdc.oaire.publicfunded true
gdc.oaire.sciencefields 04 agricultural and veterinary sciences
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 0401 agriculture, forestry, and fisheries
gdc.openalex.fwci 3.696
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 24
gdc.plumx.crossrefcites 27
gdc.plumx.facebookshareslikecount 17
gdc.plumx.mendeley 65
gdc.plumx.scopuscites 28
gdc.scopus.citedcount 28
gdc.wos.citedcount 21
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscovery e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublication cfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery cfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections