Tobset: a New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robots

dc.authorid Alam, Muhammad Shahab/0000-0002-5653-2503
dc.authorid Gunes, Ahmet/0000-0003-1663-0368
dc.authorid Khan, Muhammad/0000-0002-9195-3477
dc.authorid Tufail, Muhammad/0000-0002-0287-3900
dc.authorid , bashir/0000-0001-5254-7698
dc.authorid saleem, waqas/0000-0003-3991-0127
dc.authorid Alam, Mansoor/0000-0003-1732-205X
dc.authorscopusid 57189388538
dc.authorscopusid 57208291019
dc.authorscopusid 57198172314
dc.authorscopusid 57209876827
dc.authorscopusid 57198263797
dc.authorscopusid 52664298700
dc.authorscopusid 24725537700
dc.authorwosid Alam, Muhammad Shahab/CAF-0412-2022
dc.authorwosid Gunes, Ahmet/AAC-1808-2022
dc.authorwosid Khan, Muhammad/N-5478-2016
dc.authorwosid Gunes, Ahmet/E-5481-2013
dc.contributor.author Alam, Muhammad Shahab
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Alam, Mansoor
dc.contributor.author Tufail, Muhammad
dc.contributor.author Güneş, Ahmet
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Gunes, Ahmet
dc.contributor.author Salah, Bashir
dc.contributor.author Khan, Muhammad Tahir
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Güneş, Ahmet
dc.contributor.other Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:18:04Z
dc.date.available 2024-07-05T15:18:04Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Alam, Muhammad Shahab; Gunes, Ahmet] Gebze Tech Univ, Def Technol Inst, TR-41400 Gebze, Turkey; [Alam, Mansoor; Tufail, Muhammad; Nasir, Fazal E.; Khan, Muhammad Tahir] Natl Ctr Robot & Automat NCRA, Adv Robot & Automat Lab, Peshawar 25000, Pakistan; [Tufail, Muhammad; Khan, Muhammad Tahir] Univ Engn & Technol, Dept Mech Engn, Peshawar 25000, Pakistan; [Khan, Muhammad Umer] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkey; [Salah, Bashir] King Saud Univ, Coll Engn, Dept Ind Engn, Riyadh 11421, Saudi Arabia; [Saleem, Waqas] Inst Technol, Dept Mech & Mfg Engn, Sligo F91 YW50, Ireland en_US
dc.description Alam, Muhammad Shahab/0000-0002-5653-2503; Gunes, Ahmet/0000-0003-1663-0368; Khan, Muhammad/0000-0002-9195-3477; Tufail, Muhammad/0000-0002-0287-3900; , bashir/0000-0001-5254-7698; saleem, waqas/0000-0003-3991-0127; Alam, Mansoor/0000-0003-1732-205X en_US
dc.description.abstract Selective agrochemical spraying is a highly intricate task in precision agriculture. It requires spraying equipment to distinguish between crop (plants) and weeds and perform spray operations in real-time accordingly. The study presented in this paper entails the development of two convolutional neural networks (CNNs)-based vision frameworks, i.e., Faster R-CNN and YOLOv5, for the detection and classification of tobacco crops/weeds in real time. An essential requirement for CNN is to pre-train it well on a large dataset to distinguish crops from weeds, lately the same trained network can be utilized in real fields. We present an open access image dataset (TobSet) of tobacco plants and weeds acquired from local fields at different growth stages and varying lighting conditions. The TobSet comprises 7000 images of tobacco plants and 1000 images of weeds and bare soil, taken manually with digital cameras periodically over two months. Both vision frameworks are trained and then tested using this dataset. The Faster R-CNN-based vision framework manifested supremacy over the YOLOv5-based vision framework in terms of accuracy and robustness, whereas the YOLOv5-based vision framework demonstrated faster inference. Experimental evaluation of the system is performed in tobacco fields via a four-wheeled mobile robot sprayer controlled using a computer equipped with NVIDIA GTX 1650 GPU. The results demonstrate that Faster R-CNN and YOLOv5-based vision systems can analyze plants at 10 and 16 frames per second (fps) with a classification accuracy of 98% and 94%, respectively. Moreover, the precise smart application of pesticides with the proposed system offered a 52% reduction in pesticide usage by spotting the targets only, i.e., tobacco plants. en_US
dc.description.sponsorship King Saud University, Saudi Arabia [RSP-2021/145] en_US
dc.description.sponsorship This study received funding from King Saud University, Saudi Arabia, through researchers supporting project number (RSP-2021/145). The APCs were funded by King Saud University, Saudi Arabia, through researchers supporting project number (RSP-2021/145). en_US
dc.identifier.citationcount 10
dc.identifier.doi 10.3390/app12031308
dc.identifier.issn 2076-3417
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85123410420
dc.identifier.uri https://doi.org/10.3390/app12031308
dc.identifier.uri https://hdl.handle.net/20.500.14411/1827
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000756044700001
dc.identifier.wosquality Q2
dc.institutionauthor Khan, Muhammad Umer
dc.institutionauthor Güneş, Ahmet
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 26
dc.subject precision agriculture en_US
dc.subject selective spraying en_US
dc.subject vision-based crop and weed detection en_US
dc.subject convolutional neural networks en_US
dc.subject Faster R-CNN en_US
dc.subject YOLOv5 en_US
dc.title Tobset: a New Tobacco Crop and Weeds Image Dataset and Its Utilization for Vision-Based Spraying by Agricultural Robots en_US
dc.type Article en_US
dc.wos.citedbyCount 19
dspace.entity.type Publication
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscovery e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublication cfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery cfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections