FRICTION AND WEAR BEHAVIOR OF SELECTED DENTAL CERAMICS

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publ Co Pte Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

The purpose of this study was to determine the friction coefficients and wear rates of six commercially available dental ceramics including IPS Empress 2 (E2), Cergo Pressable Ceramic (CPC), Cercon Ceram (CCS) and Super porcelain EX-3 (SPE). Bovine enamel (BE) was also tested as a reference material for comparison purposes. Samples of the dental ceramics were prepared according to the instructions described by the manufacturers in disk-shape with nominal dimensions of 12 mm x 2 mm. The wear tests were performed by means of a pin-on-disk type tribometer. The friction coefficients and specific wear rates of the materials were determined at a load of 10 N and rotating speed of 0.25 cm/s without lubrication. Surface morphology of the wear tracks was examined using a scanning electron microscope. Statistical analyses were made using one-way ANOVA and Turkey's HSD (P < 0.05).

Description

Ozturk, Abdullah/0000-0002-1525-1561; Ozturk, Abdullah/0000-0002-1525-1561; Park, Jongee/0000-0003-1415-6906;

Keywords

Friction, wear, tribology, dental ceramics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

4

WoS Q

Q4

Scopus Q

Q4

Source

Volume

16

Issue

5

Start Page

653

End Page

661

Collections