Absorption and Optical Conduction in Inse/Znse Thin Film Transistors

dc.contributor.author Al Garni, S. E.
dc.contributor.author Qasrawi, A. F.
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T14:29:27Z
dc.date.available 2024-07-05T14:29:27Z
dc.date.issued 2016
dc.description Qasrawi, Atef Fayez/0000-0001-8193-6975; Al Garni, Sabah/0000-0002-4995-8231 en_US
dc.description.abstract In this work, (n)InSe/(p)ZnSe and (n)InSe/(p)ZnSe/(n)InSe heterojunction thin film transistor (TFT) devices are produced by the thermal evaporation technique. They are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy and optical spectroscopy techniques. While the InSe films are found to be amorphous, the ZnSe and InSe/ZnSe films exhibited polycrystalline nature of crystallization. The optical analysis has shown that these devices exhibit a conduction band offsets of 0.47 and valence band offsets of 0.67 and 0.74 eV, respectively. In addition, while the dielectric spectra of the InSe and ZnSe displayed resonance peaks at 416 and 528 THz, the dielectric spectra of InSe/ZnSe and InSe/ZnSe/InSe layers indicated two additional peaks at 305 and 350 THz, respectively. On the other hand, the optical conductivity analysis and modeling in the light of free carrier absorption theory reflected low values of drift mobilities associated with incident alternating electric fields at terahertz frequencies. The drift mobility of the charge carrier particles at femtoseconds scattering times increased as a result of the ZnSe sandwiching between two InSe layers. The valence band offsets, the dielectric resonance at 305 and 350 THz and the optical conductivity values nominate TFT devices for use in optoelectronics. en_US
dc.description.sponsorship Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [150-363-1436-G]; DSR en_US
dc.description.sponsorship This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under the Grant number 150-363-1436-G. The authors, therefore, acknowledge with thanks the DSR technical and financial support. en_US
dc.identifier.doi 10.1142/S1793604716500193
dc.identifier.issn 1793-6047
dc.identifier.issn 1793-7213
dc.identifier.uri https://doi.org/10.1142/S1793604716500193
dc.identifier.uri https://hdl.handle.net/20.500.14411/521
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Heterojunction en_US
dc.subject thin film transistor en_US
dc.subject optical spectra en_US
dc.subject optical conductivity en_US
dc.title Absorption and Optical Conduction in Inse/Znse Thin Film Transistors en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Qasrawi, Atef Fayez/0000-0001-8193-6975
gdc.author.id Al Garni, Sabah/0000-0002-4995-8231
gdc.author.institutional Qasrawı, Atef Fayez Hasan
gdc.author.wosid Qasrawi, Atef Fayez/R-4409-2019
gdc.author.wosid Al Garni, Sabah/E-1423-2013
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Al Garni, S. E.] King Abdulaziz Univ, Dept Phys, Fac Sci, Al Faisaliah Campus, Jeddah 21413, Saudi Arabia; [Qasrawi, A. F.] Atilim Univ, Fac Engn, AAUJ, Grp Phys, TR-06836 Ankara, Turkey en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 9 en_US
gdc.description.wosquality Q4
gdc.identifier.wos WOS:000378134700003
gdc.wos.citedcount 9
relation.isAuthorOfPublication 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isAuthorOfPublication.latestForDiscovery 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections