Absorption and Optical Conduction in Inse/Znse Thin Film Transistors
No Thumbnail Available
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
World Scientific Publ Co Pte Ltd
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this work, (n)InSe/(p)ZnSe and (n)InSe/(p)ZnSe/(n)InSe heterojunction thin film transistor (TFT) devices are produced by the thermal evaporation technique. They are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy and optical spectroscopy techniques. While the InSe films are found to be amorphous, the ZnSe and InSe/ZnSe films exhibited polycrystalline nature of crystallization. The optical analysis has shown that these devices exhibit a conduction band offsets of 0.47 and valence band offsets of 0.67 and 0.74 eV, respectively. In addition, while the dielectric spectra of the InSe and ZnSe displayed resonance peaks at 416 and 528 THz, the dielectric spectra of InSe/ZnSe and InSe/ZnSe/InSe layers indicated two additional peaks at 305 and 350 THz, respectively. On the other hand, the optical conductivity analysis and modeling in the light of free carrier absorption theory reflected low values of drift mobilities associated with incident alternating electric fields at terahertz frequencies. The drift mobility of the charge carrier particles at femtoseconds scattering times increased as a result of the ZnSe sandwiching between two InSe layers. The valence band offsets, the dielectric resonance at 305 and 350 THz and the optical conductivity values nominate TFT devices for use in optoelectronics.
Description
Qasrawi, Atef Fayez/0000-0001-8193-6975; Al Garni, Sabah/0000-0002-4995-8231
Keywords
Heterojunction, thin film transistor, optical spectra, optical conductivity
Turkish CoHE Thesis Center URL
Fields of Science
0103 physical sciences, 01 natural sciences
Citation
WoS Q
Q4
Scopus Q
Q3

OpenCitations Citation Count
11
Source
Functional Materials Letters
Volume
9
Issue
2
Start Page
1650019
End Page
Collections
PlumX Metrics
Citations
CrossRef : 7
Scopus : 14
Captures
Mendeley Readers : 11
Web of Science™ Citations
9
checked on Jan 26, 2026
Page Views
3
checked on Jan 26, 2026
Google Scholar™

OpenAlex FWCI
1.11665411
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

5
GENDER EQUALITY

6
CLEAN WATER AND SANITATION

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

14
LIFE BELOW WATER

16
PEACE, JUSTICE AND STRONG INSTITUTIONS


