Solution of Initial Value Problems With Monogenic Initial Functions in Banach Spaces With <i>l<sub>p</Sub><
| dc.contributor.author | Yuksel, Ugur | |
| dc.date.accessioned | 2024-07-05T15:11:45Z | |
| dc.date.available | 2024-07-05T15:11:45Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | This paper deals with the initial value problem of the type partial derivative u(t,x)/partial derivative t = Lu(t,x), u(0,x) = u(0)(x) (0.1) in Banach spaces with L-p-norm, where t is the time, u(0) is a monogenic function and the operator L is of the form Lu(t,x) := Sigma(A,B,i) C-B,i((A))(t,x)partial derivative u(B)(t,x)/partial derivative x(i)e(A). (0.2) The desired function u(t,x) = Sigma(B) u(B)(t,x)e(B) defined in [0, T] x Omega subset of R-0(+) x Rn+1 is a Clifford-algebra-valued function with real-valued components u(B)(t, x). We give sufficient conditions on the coefficients of the operator L under which L is associated to the Cauchy-Riemann operator D of CLIFFORD analysis. For such an operator L the initial value problem (0.1) is solvable for an arbitrary monogenic initial function u(0) and the solution is also monogenic for each t. | en_US |
| dc.identifier.doi | 10.1007/s00006-008-0132-5 | |
| dc.identifier.issn | 0188-7009 | |
| dc.identifier.issn | 1661-4909 | |
| dc.identifier.scopus | 2-s2.0-77952236240 | |
| dc.identifier.uri | https://doi.org/10.1007/s00006-008-0132-5 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1486 | |
| dc.language.iso | en | en_US |
| dc.publisher | Birkhauser verlag Ag | en_US |
| dc.relation.ispartof | Advances in Applied Clifford Algebras | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Initial value problem | en_US |
| dc.subject | monogenic function | en_US |
| dc.subject | scales of Banach spaces | en_US |
| dc.title | Solution of Initial Value Problems With Monogenic Initial Functions in Banach Spaces With <i>l<sub>p</Sub>< | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 25030986300 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 209 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 201 | en_US |
| gdc.description.volume | 20 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2077475789 | |
| gdc.identifier.wos | WOS:000275459100017 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 4.1632875E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 7.0004147E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.82468565 | |
| gdc.openalex.normalizedpercentile | 0.71 | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 8 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 13 | |
| gdc.scopus.citedcount | 13 | |
| gdc.virtual.author | Yüksel, Uğur | |
| gdc.wos.citedcount | 9 | |
| relation.isAuthorOfPublication | 8ca5c799-f068-4bab-9e35-9efbee553fca | |
| relation.isAuthorOfPublication.latestForDiscovery | 8ca5c799-f068-4bab-9e35-9efbee553fca | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
