Solution of Initial Value Problems With Monogenic Initial Functions in Banach Spaces With <i>l<sub>p</Sub><

dc.contributor.author Yuksel, Ugur
dc.date.accessioned 2024-07-05T15:11:45Z
dc.date.available 2024-07-05T15:11:45Z
dc.date.issued 2010
dc.description.abstract This paper deals with the initial value problem of the type partial derivative u(t,x)/partial derivative t = Lu(t,x), u(0,x) = u(0)(x) (0.1) in Banach spaces with L-p-norm, where t is the time, u(0) is a monogenic function and the operator L is of the form Lu(t,x) := Sigma(A,B,i) C-B,i((A))(t,x)partial derivative u(B)(t,x)/partial derivative x(i)e(A). (0.2) The desired function u(t,x) = Sigma(B) u(B)(t,x)e(B) defined in [0, T] x Omega subset of R-0(+) x Rn+1 is a Clifford-algebra-valued function with real-valued components u(B)(t, x). We give sufficient conditions on the coefficients of the operator L under which L is associated to the Cauchy-Riemann operator D of CLIFFORD analysis. For such an operator L the initial value problem (0.1) is solvable for an arbitrary monogenic initial function u(0) and the solution is also monogenic for each t. en_US
dc.identifier.doi 10.1007/s00006-008-0132-5
dc.identifier.issn 0188-7009
dc.identifier.issn 1661-4909
dc.identifier.scopus 2-s2.0-77952236240
dc.identifier.uri https://doi.org/10.1007/s00006-008-0132-5
dc.identifier.uri https://hdl.handle.net/20.500.14411/1486
dc.language.iso en en_US
dc.publisher Birkhauser verlag Ag en_US
dc.relation.ispartof Advances in Applied Clifford Algebras
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Initial value problem en_US
dc.subject monogenic function en_US
dc.subject scales of Banach spaces en_US
dc.title Solution of Initial Value Problems With Monogenic Initial Functions in Banach Spaces With <i>l<sub>p</Sub>< en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 25030986300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 209 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 201 en_US
gdc.description.volume 20 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2077475789
gdc.identifier.wos WOS:000275459100017
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 4.1632875E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.0004147E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.82468565
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 8
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Yüksel, Uğur
gdc.wos.citedcount 9
relation.isAuthorOfPublication 8ca5c799-f068-4bab-9e35-9efbee553fca
relation.isAuthorOfPublication.latestForDiscovery 8ca5c799-f068-4bab-9e35-9efbee553fca
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections