Development of hard, anti-reflective coating for mid wave infrared region

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

In the 3-5 mu m Mid Wave Infrared (MWIR) thermal imaging region, the number of alternative transparent optical substrate materials are quite limited. Silicon (Si) and germanium (Ge) are among the common optical materials used in the MWIR region. However, these materials and the thin film coatings on them, suffer from low hardness and brittleness hence need to be protected against scratches and hard flying particles like sand, dust, etc.. In industry, a single layer amorphous Diamond Like Carbon (DLC) coating is used to protect the outer layer while transmitting MWIR energy. This paper suggests single layer Boron Nitride (BN) and Boron Carbide (B4C) coatings as alternatives to commercial DLC coating, providing the necessary protection and transmission efficiency with anti-reflective properties. The proposed boron-contained coatings also have an advantage of greater temperature resistance over DLC. Finally, a two-layer anti-reflective coating containing Boron Carbide layer as an outer protective coating is demonstrated.

Description

Keywords

Boron Nitride (BN), Thin Film Coating, Mid Infrared (MWIR), Anti-reflective (AR)

Turkish CoHE Thesis Center URL

Fields of Science

Citation

8

WoS Q

Q2

Scopus Q

Q2

Source

Volume

119

Issue

Start Page

End Page

Collections