Estimation in the partially nonlinear model by continuous optimization
dc.authorscopusid | 36015912400 | |
dc.authorscopusid | 23974021700 | |
dc.authorscopusid | 27968083600 | |
dc.contributor.author | Yerlikaya-Ozkurt, Fatma | |
dc.contributor.author | Taylan, Pakize | |
dc.contributor.author | Tez, Mujgan | |
dc.contributor.other | Industrial Engineering | |
dc.date.accessioned | 2024-07-05T15:19:27Z | |
dc.date.available | 2024-07-05T15:19:27Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, Ankara, Turkey; [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkey; [Tez, Mujgan] Marmara Univ, Dept Stat, Istanbul, Turkey | en_US |
dc.description.abstract | A useful model for data analysis is the partially nonlinear model where response variable is represented as the sum of a nonparametric and a parametric component. In this study, we propose a new procedure for estimating the parameters in the partially nonlinear models. Therefore, we consider penalized profile nonlinear least square problem where nonparametric components are expressed as a B-spline basis function, and then estimation problem is expressed in terms of conic quadratic programming which is a continuous optimization problem and solved interior point method. An application study is conducted to evaluate the performance of the proposed method by considering some well-known performance measures. The results are compared against parametric nonlinear model. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1080/02664763.2020.1864816 | |
dc.identifier.endpage | 2846 | en_US |
dc.identifier.issn | 0266-4763 | |
dc.identifier.issn | 1360-0532 | |
dc.identifier.issue | 13-15 | en_US |
dc.identifier.pmid | 35707065 | |
dc.identifier.scopus | 2-s2.0-85098011447 | |
dc.identifier.startpage | 2826 | en_US |
dc.identifier.uri | https://doi.org/10.1080/02664763.2020.1864816 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1954 | |
dc.identifier.volume | 48 | en_US |
dc.identifier.wos | WOS:000601344400001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Yerlikaya Özkurt, Fatma | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nonlinear model | en_US |
dc.subject | nonparametric regression | en_US |
dc.subject | estimation | en_US |
dc.subject | B-spline | en_US |
dc.subject | continuous optimization | en_US |
dc.title | Estimation in the partially nonlinear model by continuous optimization | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
relation.isAuthorOfPublication.latestForDiscovery | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
relation.isOrgUnitOfPublication.latestForDiscovery | 12c9377e-b7fe-4600-8326-f3613a05653d |