Estimation in the partially nonlinear model by continuous optimization

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

A useful model for data analysis is the partially nonlinear model where response variable is represented as the sum of a nonparametric and a parametric component. In this study, we propose a new procedure for estimating the parameters in the partially nonlinear models. Therefore, we consider penalized profile nonlinear least square problem where nonparametric components are expressed as a B-spline basis function, and then estimation problem is expressed in terms of conic quadratic programming which is a continuous optimization problem and solved interior point method. An application study is conducted to evaluate the performance of the proposed method by considering some well-known performance measures. The results are compared against parametric nonlinear model.

Description

Keywords

Nonlinear model, nonparametric regression, estimation, B-spline, continuous optimization

Turkish CoHE Thesis Center URL

Citation

1

WoS Q

Q2

Scopus Q

Source

Volume

48

Issue

13-15

Start Page

2826

End Page

2846

Collections