Ann-Based Maximum Power Tracking for a Grid-Synchronized Wind Turbine-Driven Doubly Fed Induction Generator Fed by Matrix Converter

dc.contributor.author Alarabi, M.A.
dc.contributor.author Sünter, S.
dc.date.accessioned 2025-06-05T21:18:42Z
dc.date.available 2025-06-05T21:18:42Z
dc.date.issued 2025
dc.description.abstract The integration of renewable energy sources, such as wind power, into the electrical grid is essential for the development of sustainable energy systems. Doubly fed induction generators (DFIGs) have been significantly utilized in wind energy conversion systems (WECSs) because of their efficient power generation and variable speed operation. However, optimizing wind power extraction at variable wind speeds remains a major challenge. To address this, an artificial neural network (ANN) is adopted to predict the optimal shaft speed, ensuring maximum power point tracking (MPPT) for a wind energy-driven DFIG connected to a matrix converter (MC). The DFIG is controlled via field-oriented control (FOC), which allows independent power output regulation and separately controls the stator active and reactive power components. Through its compact design, bidirectional power flow, and enhanced harmonic performance, the MC, which is controlled by the simplified Venturini modulation technique, improves the efficiency and dependability of the system. Simulation outcomes confirm that the ANN-based MPPT enhances the power extraction efficiency and improves the system performance. This study shows how wind energy systems can be optimized for smart grids by integrating advanced control techniques like FOC and simplified Venturini modulation with intelligent algorithms like ANN. © 2025 by the authors. en_US
dc.identifier.doi 10.3390/en18102521
dc.identifier.issn 1996-1073
dc.identifier.scopus 2-s2.0-105006713323
dc.identifier.uri https://doi.org/10.3390/en18102521
dc.identifier.uri https://hdl.handle.net/20.500.14411/10601
dc.language.iso en en_US
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI) en_US
dc.relation.ispartof Energies en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject DFIG en_US
dc.subject FOC en_US
dc.subject MC en_US
dc.subject MPPT en_US
dc.subject Venturini Algorithm en_US
dc.subject Wecs en_US
dc.subject Wind Energy en_US
dc.title Ann-Based Maximum Power Tracking for a Grid-Synchronized Wind Turbine-Driven Doubly Fed Induction Generator Fed by Matrix Converter en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59917934600
gdc.author.scopusid 7004164902
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Alarabi M.A.] Electrical and Electronics Engineering Department, Atilim University, Ankara, 06830, Turkey; [Sünter S.] Electrical and Electronics Engineering Department, Atilim University, Ankara, 06830, Turkey en_US
gdc.description.issue 10 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2521
gdc.description.volume 18 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4410346483
gdc.identifier.wos WOS:001495967500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Technology
gdc.oaire.keywords FOC
gdc.oaire.keywords T
gdc.oaire.keywords MPPT
gdc.oaire.keywords wind energy
gdc.oaire.keywords DFIG
gdc.oaire.keywords MC
gdc.oaire.keywords WECS
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.02156574
gdc.openalex.normalizedpercentile 0.75
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 50be38c5-40c4-4d5f-b8e6-463e9514c6dd

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ANN-Based MaximumPowerTracking for a energies-printed_version_13.05.2025.pdf
Size:
13.21 MB
Format:
Adobe Portable Document Format

Collections