Anisotropic mechanical properties of Tl<sub>4</sub>Ag<sub>18</sub>Te<sub>11</sub> compound with low thermal conductivity

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press inc Elsevier Science

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

The anisotropic mechanical properties of Tl4Ag18Te11 compound was investigated elaborately for the first time by using Density Functional Theory calculations with the Vienna Ab-initio Simulation Package in this work. Tl4Ag18Te11 compound was optimized in the I4mm space group and the formation energy was determined as a negative value that is the indication of the experimental synthesizability of this compound. The optimized crystal structure was employed for the calculations of the elastic constants and the obtained values revealed the mechanical stability of Tl4Ag18Te11 compound. The polycrystalline properties were determined such as shear modulus, Poisson's ratio, etc. In addition, the anisotropic elastic properties were presented. The direction dependent sound waves velocities, polarization of the sound waves, enhancement factor and the power flow angle were determined. The thermal conductivity studies were performed and the minimum thermal conductivity (0.259 W m(-1)K(-1)) and the diffusion thermal conductivity (0.202 W m(-1)K(-1)) were calculated. This study illustrates the capability of this compound for the thermoelectric materials.

Description

SURUCU, Gokhan/0000-0002-3910-8575; SURUCU, Özge/0000-0002-8478-1267; Gencer, Aysenur/0000-0003-2574-3516; SURUCU, Gokhan/0000-0002-3910-8575; Deligoz, Engin/0000-0001-6289-9320

Keywords

Thermoelectric materials, Tl4Ag18Te11, ab initio, Mechanical properties, Anisotropic elastic properties

Turkish CoHE Thesis Center URL

Fields of Science

Citation

20

WoS Q

Q2

Scopus Q

Source

Volume

289

Issue

Start Page

End Page

Collections