Graphene based catalyst supports for high temperature PEM fuel cell application

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

In this study, the effect of graphene nanoplatelet (GNP) and graphene oxide (GO) based carbon supports on polybenzimidazole (PBI) based high temperature proton exchange membrane fuel cells (HT-PEMFCs) performances were investigated. Pt/GNP and Pt/GO catalysts were synthesized by microwave assisted chemical reduction support. X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Brauner, Emmet and Teller (BET) analysis and high resolution transmission electron microscopy (HRTEM) were used to investigate the microstructure and morphology of the as-prepared catalysts. The electrochemical surface area (ESA) was studied by cyclic voltammetry (CV). The results showed deposition of smaller Pt nanoparticles with uniform distribution and higher ECSA for Pt/GNP compared to Pt/GO. The Pt/GNP and Pt/GO catalysts were tested in 25 cm(2) active area single HT-PEMFC with H-2/air at 160 degrees C without humidification. Performance evaluation in HT-PEMFC shows current densities of 0.28, 0.17 and 0.22 A/cm(2) for the Pt/GNP, Pt/C and Pt/GO catalysts based MEAs at 160 degrees C, respectively. The maximum power density was obtained for MEA prepared by Pt/GNP catalyst with H-2/Air dry reactant gases as 0.34, 0.40 and 0.46 W/cm(2) at 160 degrees C, 175 degrees C and 190 degrees C, respectively. Graphene based catalyst supports exhibits an enhanced HT-PEMFC performance in both low and high current density regions. The results indicate the graphene catalyst support could be utilized as the catalyst support for HT-PEMFC application. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702

Keywords

PEM fuel cell, High temperature, Graphene, Graphene oxide, Catalyst

Turkish CoHE Thesis Center URL

Citation

65

WoS Q

Q1

Scopus Q

Source

12th International Symposium on Hydrogen Power Theoretical and Engineering Solutions (HYPOTHESIS) -- JUN 28-30, 2017 -- Syracuse, ITALY

Volume

43

Issue

26

Start Page

11820

End Page

11829

Collections