E-Constraint Guided Stochastic Search With Successive Seeding for Multi-Objective Optimization of Large-Scale Steel Double-Layer Grids

dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.author Aminbakhsh, Saman
dc.contributor.other Civil Engineering
dc.contributor.other Department of Civil Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:18:16Z
dc.date.available 2024-07-05T15:18:16Z
dc.date.issued 2022
dc.description Aminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607X en_US
dc.description.abstract This paper proposes a design-driven structural optimization algorithm named e-constraint guided stochastic search (e-GSS) for multi-objective design optimization of large-scale steel double-layer grids having numerous discrete design variables. Based on the well-known e-constraint method, first, the multi-objective optimization problem is transformed into a set of single-objective optimization problems. Next, each single-objective optimization problem is tackled using an enhanced reformulation of the standard guided stochastic search algorithm proposed based on a stochastic maximum incremental/decremental step size approach. Moreover, a successive seeding strategy is employed in conjunction with the proposed e-GSS algorithm to improve its performance in multi-objective optimization of large-scale steel double-layer grids. The numerical results obtained through multi-objective optimization of three challenging test examples, namely a 1728-member double-layer compound barrel vault, a 2304-member double-layer scallop dome, and a 2400-member double-layer multi-radial dome, demonstrate the usefulness of the proposed e-GSS algorithm in generating Pareto fronts of the foregoing multi-objective structural optimization problems with up to 2400 distinct sizing variables. en_US
dc.identifier.doi 10.1016/j.jobe.2021.103767
dc.identifier.issn 2352-7102
dc.identifier.scopus 2-s2.0-85121204003
dc.identifier.uri https://doi.org/10.1016/j.jobe.2021.103767
dc.identifier.uri https://hdl.handle.net/20.500.14411/1846
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Journal of Building Engineering
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Multi-objective optimization en_US
dc.subject Structural optimization en_US
dc.subject Steel double-layer grids en_US
dc.subject e-constraint method en_US
dc.subject Guided stochastic search en_US
dc.subject High-dimensional optimization en_US
dc.title E-Constraint Guided Stochastic Search With Successive Seeding for Multi-Objective Optimization of Large-Scale Steel Double-Layer Grids en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Aminbakhsh, Saman/0000-0002-4389-1910
gdc.author.id Kazemzadeh Azad, Saeid/0000-0001-9309-607X
gdc.author.institutional Aminbakhsh, Saman
gdc.author.institutional Azad, Saeıd Kazemzadeh
gdc.author.scopusid 57193753354
gdc.author.scopusid 55768552300
gdc.author.wosid Aminbakhsh, Saman/S-6864-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Azad, Saeid Kazemzadeh; Aminbakhsh, Saman] Atilim Univ, Dept Civil Engn, Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 103767
gdc.description.volume 46 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3215777744
gdc.identifier.wos WOS:000776167300003
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 2.9405736E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.486428E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0201 civil engineering
gdc.openalex.fwci 0.489
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.wos.citedcount 10
relation.isAuthorOfPublication 623610e1-d19c-417e-8c93-93d5f2a70268
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery 623610e1-d19c-417e-8c93-93d5f2a70268
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections