e-constraint guided stochastic search with successive seeding for multi-objective optimization of large-scale steel double-layer grids

dc.authoridAminbakhsh, Saman/0000-0002-4389-1910
dc.authoridKazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid57193753354
dc.authorscopusid55768552300
dc.authorwosidAminbakhsh, Saman/S-6864-2019
dc.contributor.authorAzad, Saeid Kazemzadeh
dc.contributor.authorAminbakhsh, Saman
dc.contributor.otherCivil Engineering
dc.contributor.otherDepartment of Civil Engineering
dc.date.accessioned2024-07-05T15:18:16Z
dc.date.available2024-07-05T15:18:16Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Azad, Saeid Kazemzadeh; Aminbakhsh, Saman] Atilim Univ, Dept Civil Engn, Ankara, Turkeyen_US
dc.descriptionAminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607Xen_US
dc.description.abstractThis paper proposes a design-driven structural optimization algorithm named e-constraint guided stochastic search (e-GSS) for multi-objective design optimization of large-scale steel double-layer grids having numerous discrete design variables. Based on the well-known e-constraint method, first, the multi-objective optimization problem is transformed into a set of single-objective optimization problems. Next, each single-objective optimization problem is tackled using an enhanced reformulation of the standard guided stochastic search algorithm proposed based on a stochastic maximum incremental/decremental step size approach. Moreover, a successive seeding strategy is employed in conjunction with the proposed e-GSS algorithm to improve its performance in multi-objective optimization of large-scale steel double-layer grids. The numerical results obtained through multi-objective optimization of three challenging test examples, namely a 1728-member double-layer compound barrel vault, a 2304-member double-layer scallop dome, and a 2400-member double-layer multi-radial dome, demonstrate the usefulness of the proposed e-GSS algorithm in generating Pareto fronts of the foregoing multi-objective structural optimization problems with up to 2400 distinct sizing variables.en_US
dc.identifier.citation5
dc.identifier.doi10.1016/j.jobe.2021.103767
dc.identifier.issn2352-7102
dc.identifier.scopus2-s2.0-85121204003
dc.identifier.urihttps://doi.org/10.1016/j.jobe.2021.103767
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1846
dc.identifier.volume46en_US
dc.identifier.wosWOS:000776167300003
dc.identifier.wosqualityQ1
dc.institutionauthorAminbakhsh, Saman
dc.institutionauthorAzad, Saeıd Kazemzadeh
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-objective optimizationen_US
dc.subjectStructural optimizationen_US
dc.subjectSteel double-layer gridsen_US
dc.subjecte-constraint methoden_US
dc.subjectGuided stochastic searchen_US
dc.subjectHigh-dimensional optimizationen_US
dc.titlee-constraint guided stochastic search with successive seeding for multi-objective optimization of large-scale steel double-layer gridsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication623610e1-d19c-417e-8c93-93d5f2a70268
relation.isAuthorOfPublicationa5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery623610e1-d19c-417e-8c93-93d5f2a70268
relation.isOrgUnitOfPublication01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections