E-Constraint Guided Stochastic Search With Successive Seeding for Multi-Objective Optimization of Large-Scale Steel Double-Layer Grids

dc.authorid Aminbakhsh, Saman/0000-0002-4389-1910
dc.authorid Kazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid 57193753354
dc.authorscopusid 55768552300
dc.authorwosid Aminbakhsh, Saman/S-6864-2019
dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.author Aminbakhsh, Saman
dc.contributor.other Civil Engineering
dc.contributor.other Department of Civil Engineering
dc.date.accessioned 2024-07-05T15:18:16Z
dc.date.available 2024-07-05T15:18:16Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Azad, Saeid Kazemzadeh; Aminbakhsh, Saman] Atilim Univ, Dept Civil Engn, Ankara, Turkey en_US
dc.description Aminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607X en_US
dc.description.abstract This paper proposes a design-driven structural optimization algorithm named e-constraint guided stochastic search (e-GSS) for multi-objective design optimization of large-scale steel double-layer grids having numerous discrete design variables. Based on the well-known e-constraint method, first, the multi-objective optimization problem is transformed into a set of single-objective optimization problems. Next, each single-objective optimization problem is tackled using an enhanced reformulation of the standard guided stochastic search algorithm proposed based on a stochastic maximum incremental/decremental step size approach. Moreover, a successive seeding strategy is employed in conjunction with the proposed e-GSS algorithm to improve its performance in multi-objective optimization of large-scale steel double-layer grids. The numerical results obtained through multi-objective optimization of three challenging test examples, namely a 1728-member double-layer compound barrel vault, a 2304-member double-layer scallop dome, and a 2400-member double-layer multi-radial dome, demonstrate the usefulness of the proposed e-GSS algorithm in generating Pareto fronts of the foregoing multi-objective structural optimization problems with up to 2400 distinct sizing variables. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1016/j.jobe.2021.103767
dc.identifier.issn 2352-7102
dc.identifier.scopus 2-s2.0-85121204003
dc.identifier.uri https://doi.org/10.1016/j.jobe.2021.103767
dc.identifier.uri https://hdl.handle.net/20.500.14411/1846
dc.identifier.volume 46 en_US
dc.identifier.wos WOS:000776167300003
dc.identifier.wosquality Q1
dc.institutionauthor Aminbakhsh, Saman
dc.institutionauthor Azad, Saeıd Kazemzadeh
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 10
dc.subject Multi-objective optimization en_US
dc.subject Structural optimization en_US
dc.subject Steel double-layer grids en_US
dc.subject e-constraint method en_US
dc.subject Guided stochastic search en_US
dc.subject High-dimensional optimization en_US
dc.title E-Constraint Guided Stochastic Search With Successive Seeding for Multi-Objective Optimization of Large-Scale Steel Double-Layer Grids en_US
dc.type Article en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication 623610e1-d19c-417e-8c93-93d5f2a70268
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery 623610e1-d19c-417e-8c93-93d5f2a70268
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections