e-constraint guided stochastic search with successive seeding for multi-objective optimization of large-scale steel double-layer grids
dc.authorid | Aminbakhsh, Saman/0000-0002-4389-1910 | |
dc.authorid | Kazemzadeh Azad, Saeid/0000-0001-9309-607X | |
dc.authorscopusid | 57193753354 | |
dc.authorscopusid | 55768552300 | |
dc.authorwosid | Aminbakhsh, Saman/S-6864-2019 | |
dc.contributor.author | Azad, Saeid Kazemzadeh | |
dc.contributor.author | Aminbakhsh, Saman | |
dc.contributor.other | Civil Engineering | |
dc.contributor.other | Department of Civil Engineering | |
dc.date.accessioned | 2024-07-05T15:18:16Z | |
dc.date.available | 2024-07-05T15:18:16Z | |
dc.date.issued | 2022 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Azad, Saeid Kazemzadeh; Aminbakhsh, Saman] Atilim Univ, Dept Civil Engn, Ankara, Turkey | en_US |
dc.description | Aminbakhsh, Saman/0000-0002-4389-1910; Kazemzadeh Azad, Saeid/0000-0001-9309-607X | en_US |
dc.description.abstract | This paper proposes a design-driven structural optimization algorithm named e-constraint guided stochastic search (e-GSS) for multi-objective design optimization of large-scale steel double-layer grids having numerous discrete design variables. Based on the well-known e-constraint method, first, the multi-objective optimization problem is transformed into a set of single-objective optimization problems. Next, each single-objective optimization problem is tackled using an enhanced reformulation of the standard guided stochastic search algorithm proposed based on a stochastic maximum incremental/decremental step size approach. Moreover, a successive seeding strategy is employed in conjunction with the proposed e-GSS algorithm to improve its performance in multi-objective optimization of large-scale steel double-layer grids. The numerical results obtained through multi-objective optimization of three challenging test examples, namely a 1728-member double-layer compound barrel vault, a 2304-member double-layer scallop dome, and a 2400-member double-layer multi-radial dome, demonstrate the usefulness of the proposed e-GSS algorithm in generating Pareto fronts of the foregoing multi-objective structural optimization problems with up to 2400 distinct sizing variables. | en_US |
dc.identifier.citation | 5 | |
dc.identifier.doi | 10.1016/j.jobe.2021.103767 | |
dc.identifier.issn | 2352-7102 | |
dc.identifier.scopus | 2-s2.0-85121204003 | |
dc.identifier.uri | https://doi.org/10.1016/j.jobe.2021.103767 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1846 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.wos | WOS:000776167300003 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Aminbakhsh, Saman | |
dc.institutionauthor | Azad, Saeıd Kazemzadeh | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Multi-objective optimization | en_US |
dc.subject | Structural optimization | en_US |
dc.subject | Steel double-layer grids | en_US |
dc.subject | e-constraint method | en_US |
dc.subject | Guided stochastic search | en_US |
dc.subject | High-dimensional optimization | en_US |
dc.title | e-constraint guided stochastic search with successive seeding for multi-objective optimization of large-scale steel double-layer grids | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 623610e1-d19c-417e-8c93-93d5f2a70268 | |
relation.isAuthorOfPublication | a5085afb-eacf-4eb1-b19d-be25e73bcd43 | |
relation.isAuthorOfPublication.latestForDiscovery | 623610e1-d19c-417e-8c93-93d5f2a70268 | |
relation.isOrgUnitOfPublication | 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d | |
relation.isOrgUnitOfPublication | 238c4130-e9ea-4b1c-9dea-772c4a0dad39 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d |